Investigating privacy-preserving machine learning for healthcare data sharing through federated learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.37Keywords:
Privacy-preserving machine learning, Federated learning, Healthcare data sharing, Comorbidity index, Data fairness, Sample size variation.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Privacy-Preserving Machine Learning (PPML) is a pivotal paradigm in healthcare research, offering innovative solutions to the challenges of data sharing and privacy preservation. In the context of Federated Learning, this paper investigates the implementation of PPML for healthcare data sharing, focusing on the dynamic nature of data collection, sample sizes, data modalities, patient demographics, and comorbidity indices. The results reveal substantial variations in sample sizes across substudies, underscoring the need to align data collection with research objectives and available resources. The distribution of measures demonstrates a balanced approach to healthcare data modalities, ensuring data fairness and equity. The interplay between average age and sample size highlights the significance of tailored privacy-preserving strategies. The comorbidity index distribution provides insights into the health status of the studied population and aids in personalized healthcare. Additionally, the fluctuation of sample sizes over substudies emphasizes the adaptability of privacy-preserving machine learning models in diverse healthcare research scenarios. Overall, this investigation contributes to the evolving landscape of healthcare data sharing by addressing the challenges of data heterogeneity, regulatory compliance, and collaborative model development. The findings empower researchers and healthcare professionals to strike a balance between data utility and privacy preservation, ultimately advancing the field of privacy-preserving machine learning in healthcare research.Abstract
How to Cite
Downloads
Similar Articles
- Aarthi Monalisa M, Anli Suresh, Adoptive bancassurance models transforming patronization among the insured , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Neeraj, Anita Singhrova, A critical review of blockchain-based authentication techniques , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Murugaraju P, A. Edward William Benjamin, Efficacy of multimedia courseware in achievement in Mathematics , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

