Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.27Keywords:
Air quality, Deep learning models, Tree-structured parzen estimators, Hyperparameter tuning.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The research introduces an innovative approach to enhance deep learning models for air quality classification by integrating tree-structured Parzen estimators (TPE) into the hyperparameter tuning process. It applies this approach to CNN, LSTM, DNN, and DBN models and conducts extensive experiments using an air quality dataset, comparing it with grid search, random search, and genetic algorithm methods. The TPE algorithm consistently outperforms these methods, demonstrating improved classification accuracy and generalization. This approach’s potential extends to enriching water quality classification models, contributing to environmental sustainability and resource management. Bridging deep learning with TPE offers a promising solution for optimized air quality classification, supporting informed environmental preservation efforts.Abstract
How to Cite
Downloads
Similar Articles
- Pankaj Kumar, Ambrish Pandey, Rajendrakumar Anayath, Comparative study of print quality attributes on bio-based biodegradable plastic using flexography and gravure printing process , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Amanda Quist Okronipa, Isaac Asampana, Jones Yeboah Nyame, Exploring e-learning system loyalty: The role of system quality and satisfaction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R Sharmila, Nikhil S Patankar, Manjula Prabakaran, Chandra M. V. S. Akana, Arvind K Shukla, T. Raja, Recent developments in flexible printed electronics and their use in food quality monitoring and intelligent food packaging , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

