Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.27Keywords:
Air quality, Deep learning models, Tree-structured parzen estimators, Hyperparameter tuning.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The research introduces an innovative approach to enhance deep learning models for air quality classification by integrating tree-structured Parzen estimators (TPE) into the hyperparameter tuning process. It applies this approach to CNN, LSTM, DNN, and DBN models and conducts extensive experiments using an air quality dataset, comparing it with grid search, random search, and genetic algorithm methods. The TPE algorithm consistently outperforms these methods, demonstrating improved classification accuracy and generalization. This approach’s potential extends to enriching water quality classification models, contributing to environmental sustainability and resource management. Bridging deep learning with TPE offers a promising solution for optimized air quality classification, supporting informed environmental preservation efforts.Abstract
How to Cite
Downloads
Similar Articles
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. Rajkumar, B. Vijay Bhaskar, Assessing the impact of indoor air pollution on respiratory health: A survey of home residents in rural area , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.