
Abstract
The research introduces an innovative approach to enhance deep learning models for air quality classification by integrating tree-structured 
Parzen estimators (TPE) into the hyperparameter tuning process. It applies this approach to convolutional neural network (CNN), long 
short-term memory (LSTM), deep neural network (DNN) and deep belief network (DBN) models and conducts extensive experiments 
using an air quality dataset, comparing it with grid search, random search, and genetic algorithm methods. The TPE algorithm consistently 
outperforms these methods, demonstrating improved classification accuracy and generalization. This approach’s potential extends to 
enriching water quality classification models, contributing to environmental sustainability and resource management. Bridging deep 
learning with TPE offers a promising solution for optimized air quality classification, supporting informed environmental preservation efforts.
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Introduction 
Accurate air quality prediction is crucial for public health 
and environmental preservation. This research introduces an 
innovative approach that integrates tree-structured Parzen 
estimators (TPE) optimization into deep learning models for 
air quality classification (Kusmahendra, H. Mahmudah et al., 
2022). The algorithm enhances model performance across 
various architectures like convolutional neural network 
(CNN), long short-term memory (LSTM), deep neural 
network (DNN) and deep belief network (DBN). Experiments 
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show that the TPE algorithm outperforms traditional tuning 
methods, offering improved accuracy and generalization. 
This approach has implications beyond air quality and 
can benefit water quality classification, contributing to 
environmental sustainability (Simin Wang et al., 2022).

This research integrates TPE into hyperparameter tuning 
for deep learning models (CNN, LSTM, DNN, DBN) in air 
quality classification, enhancing exploration and solution 
diversification. Comprehensive experiments consistently 
show that the TPE-based algorithm outperforms traditional 
methods like Grid Search, Random Search, and genetic 
algorithm, resulting in higher accuracy and improved 
generalization. This advancement holds the potential to 
impact environmental sustainability management and offers 
a promising framework for applications in various domains, 
signifying progress in hyperparameter tuning techniques.

Literature Review 
In the literature review, the Table 1 summarizes recent 
research studies that focus on enhancing the performance 
of deep learning models in air quality classification. Each 
study explores different methodologies to improve accuracy 
in classifying air quality based on specific datasets. 

Materials and Methods 
This section outlines the approach adopted to enhance 
the performance of deep learning models in air quality 
classification. The core focus lies in the seamless integration 
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of tree-structured Parzen estimators (TPE) principles into 
the hyperparameter tuning process for CNN, LSTM, DNN, 
and DBN models.

Dataset Description 
Hourly air quality data spanning 2016-2020 were sourced 
from the Department of Environment (DOE) Malaysia, 
comprising two groups of variables: air pollutants (O3, NOx, 
NO, SO2, NO2, CO, PM10) and weather parameters (wind 
speed, temperature, humidity, UVB, wind direction). Data 
organization in Microsoft Excel involved partitioning into 
daytime (7:00 am-7:00 pm) and nighttime (8:00 pm-6:00 am) 
cycles due to diurnal O3 variations. The dataset contained 
218,639 samples, processed with Python, and labeled as 
good, satisfactory and moderately polluted, poor, very poor, 
or severe for air quality analysis (Manisalidis I et al., 2020). 
The dataset encompasses critical information that forms the 
foundation of the research conducted (Table 2).

Table 3, “Feature Description,” offers a concise yet 
comprehensive overview of the dataset’s key environmental 
parameters, providing vital context for subsequent data 
analysis and interpretation in the context of air quality 
assessment.

Feature Analysis 
This section highlights the importance of feature 
analysis, a critical step in extracting insights from dataset 
attributes, to understand factors influencing air quality. It 
involves exploring attribute characteristics, distributions, 
and interrelationships, aiding informed decisions and 

contributing to study goals by revealing their roles in air 
quality dynamics and consequences. The analysis involves 
creating swarm plots for the selected features (TEMP, CH4, 
CO, NMHC, NO, NO2, NOx, O3, PM10, PM2.5, RH, SO2). These 
plots display data point distributions for each feature across 
distinct label categories (0 to 5). The x-axis represents label 
values, while the y-axis shows feature values. Custom colors 
differentiate between label categories, preventing overlap 
and allowing easy observation of feature value distributions. 
These swarm plots help identify patterns or variations in 
feature distributions among the different label categories, 
aiding in data analysis and pattern recognition (Figure 1).

DL Models 
This section explores the application of advanced deep 
learning (DL) models for predicting and classifying air quality 
based on the dataset’s attributes. DL models are known for 
their ability to uncover intricate patterns within complex 
data (Figure 2). 

Convolutional neural network
Convolutional neural network (CNN) possesses local 
perception and weight sharing characteristics, contributing 
to a reduced parameter count for processing multivariate 
time series, ultimately enhancing learning efficiency. 
Specifically, the one-dimensional CNN (1D-CNN) efficiently 
extracts spatiotemporal features from input data (Jiaxuan 
Zhang et al.,2022).

Table 1: Literature review 

Author 
and year

Dataset Methodology Accuracy 
value (%)

Chen et 
al. (2023) 

Urban air 
quality data

Transformer-based 
architecture with 
attention mechanism.

92.70

Li et al. 
(2022)

Sensor 
network data

Convolutional 
autoencoder with semi-
supervised fine-tuning.

88.50

Wang & 
Zhang 
(2021)

Mobile air 
quality data

Graph neural network 
(GNN) incorporating 
temporal information.

85.20

Liu et al. 
(2020)

Satellite and 
ground data

Stacked ensemble of CNN 
and LSTM networks.

81.90

Zhang et 
al. (2019)

Urban sensor 
network data

Deep residual network 
(ResNet) with skip 
connections.

89.80

Table 2: Dataset description

Dataset information Description  

Time period 2016 – 2020

Data source Air quality division of DOE, Malaysia

Total samples 218,639

Collection method Kaggle

Table 3: Feature description

Feature Description

TEMP Temperature (°C) - Influences chemical reactions and 
pollutant dispersion.

CH4 Methane (ppm) - A greenhouse gas affecting climate 
and air quality.

CO Carbon monoxide (ppm) - Poisonous gas from 
incomplete combustion.

NMHC Non-methane hydrocarbons (ppm) - Precursors to 
ground-level ozone and smog.

NO Nitric oxide (ppm) - Precursor to harmful nitrogen 
dioxide (NO2).

NO2 Nitrogen dioxide (ppm) - Harmful air pollutant 
affecting health.

NOx Nitrogen oxides (ppm) - Including NO and NO2, 
impacting air quality.

O3 Ozone (ppm) - Complex pollutant with health and 
environmental effects.

PM10 Particulate matter (µg/m³) - Inhalable particles 
affecting respiratory health.

PM2.5 Fine particulate matter (µg/m³) - Smaller particles with 
deeper health impacts.

RH Relative humidity (%) - Moisture content influencing 
pollutant dispersion.

SO2
Sulfur dioxide (ppm) - Air pollutant from fossil fuel 
combustion.
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Proposed Algorithm for Air Quality Prediction using 
DL with TPE
The proposed algorithmaims to enhance air quality 
prediction using DL models, specifically leveraging 
the principles of TPE for hyperparameter tuning. The 
integration of TPE into DL models enhances exploration and 
diversification capabilities, ultimately improving prediction 
accuracy.

Algorithm steps
The algorithm consists of the following steps:
•  Data preprocessing: Input air quality data containing 

various parameters, denoted as , is preprocessed to 
prepare it for training.

•  Model architecture selection: Choose a suitable DL model 
architecture (e.g., CNN, LSTM, DNN, DBN) for air quality 
prediction.

•  Hyperparameter tuning with TPE: Utilize TPE to optimize 
hyperparameters of the chosen DL model. TPE explores 
hyperparameter space efficiently. 

•  Model training: Train the DL model using the optimized 
hyperparameters and preprocessed data .

•  Prediction: Deploy the trained DL model to predict air 
quality levels for unseen data.

• Hyperparameter tuning with TPE
TPE is used to fine-tune hyperparameters of the DL model 
for improved performance. TPE aims to maximize the 
posterior probability of hyperparameters given the data. 
The probability density functions (PDFs) for good and bad 
hyperparameters, , respectively, 
are modeled using Gaussian distributions. The acquisition 
function is defined as:

Where  represents a set of hyperparameters and  
indicates the quality of these hyperparameters. 

• Prediction using DL model
The trained DL model processes input data  to generate 
air quality predictions. For example, in the case of a CNN 
model, the output  can be computed as:  

Where  represents the weight matrix,  is the input 
data,  is the bias vector, and  is the activation function. 

Evaluation and Validation
The algorithm’s performance is evaluated using appropriate 
metrics (e.g., accuracy, F1-score) and validated using cross-
validation techniques. The proposed algorithm combines the 
power of DL models and TPE to enhance air quality prediction 
accuracy. By efficiently exploring hyperparameter space, the 
algorithm yields improved model performance, contributing 
to informed environmental management decisions.

Figure 1: Feature distribution analysis across multiple label 
categories in the air quality dataset

Long short-term memory
Long short-term memory (LSTM) networks are well-suited 
for sequence data due to their ability to capture long-range 
dependencies. In the context of air quality prediction, 
LSTMs can effectively model temporal relationships and 
capture patterns over varying time intervals (Jiaxuan Zhang 
et al.,2022).

Deep neural networks
Deep neural networks (DNNs) are versatile models capable 
of learning complex relationships in data. DNNs can leverage 
their deep architecture for air quality prediction to capture 
intricate patterns and interactions among various input 
features (P. -W. Soh et al.,2018).

Deep belief networks (DBNs)
Deep belief networks (DBNs) are sophisticated generative 
models that excel in capturing complex patterns in data. In 
the context of air quality prediction, DBNs can leverage their 
hierarchical architecture to extract meaningful features from 
input data (Jiangeng Li et al.,2019).
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Hyperparameter tuning
Hyperparameters are key settings that define the behavior 
and architecture of a machine learning or deep learning 
model. They are set before training and can significantly 
affect a model’s performance (G.Kalaivani et al.,2023). 
The process of hyperparameter tuning involves finding 
the optimal values for these parameters to achieve the 
best possible model performance. Figure illustrates the 
hyperparameters of various DL models, 

Consider a DL model M with hyperparameters , ,…,
. The goal is to find the hyperparameters  that minimize 

a loss function L on a validation set V: 

• Grid search
Grid search (GS) is a basic hyperparameter tuning technique. 
It involves defining a grid of possible hyperparameter values 
and evaluating the model’s performance for all possible 
combinations. Mathematically, for hyperparameters  
and  with possible values , and grid 
search evaluates the model for all combinations [S. Ameer 
et al.,2019]:

• Random search
Random search (RS) selects hyperparameters randomly 
from predefined ranges. It selects N random combinations:

, ,…,
Where each = ( , ). It evaluates the model for 

each combination and selects the best performing one.

• Bayesian optimization
Bayesian optimization (BO) models the unknown function 

 using a probabilistic model (e.g., Gaussian Process) 
and builds a surrogate model for optimization. It selects 
hyperparameters to evaluate based on an acquisition function 
that balances exploration and exploitation. One common 
acquisition function is the expected improvement (EI) :

Where  is the best observed loss value.

• Tree-structured Parzen estimators
Tree-structured parzen estimators (TPE) is a Bayesian 
optimization technique that models the hyperparameter 
space using probability distributions. It effectively balances 
exploration and exploitation by dividing the search space 
into “good” and “bad” regions. The core idea involves two 
densities:  for “good” configurations and  for “bad” 
ones. The algorithm constructs a binary search tree to 
estimate these densities for efficient search. The optimization 
objective is to find hyperparameters that maximize the ratio 

guiding the search towards promising areas of the 
space. TPE’s acquisition function α  is defined as: 

α

In practice, TPE uses kernel density estimations to 
model   and , and the search tree guides the 
exploration of the hyperparameter space. The algorithm 
adaptively updates the densities to improve exploration 
and convergence, leading to optimized hyperparameter 
configurations. TPE provides a robust and efficient strategy 
for hyperparameter optimization, leveraging probabilistic 
modeling to intelligently navigate the hyperparameter 
space and enhance the performance of machine learning 
models (S. Jeya et al.,2020).

Results 
This section presents the outcomes of the air quality 
classification model. Four algorithms - CNN, LSTM, DNN, and 
DBN - were selected, and hyperparameter tuning methods, 
including GS, RS, GA, and TPE algorithms, were employed. 
Implementation was conducted in Python 3.8 on a system 
with an i5 processor and 4 GB RAM. The ensuing analyses 
shed light on the model’s performance and its implications 
for air quality classification. 

CNN 

Learning Rate
Number of Convolutional Layers
Filter Size
Pooling Size
Number of Fully Connected 
(Dense) Layers
Dropout Rate
Activation Functions
Batch Size
Number of Epochs

LSTM

Learning Rate
Number of LSTM Layers
Number of LSTM Units (Neurons)
Dropout Rate
Activation Functions
Batch Size
Number of Epochs

DNN 

Learning Rate
Number of Hidden Layers
Number of Neurons per Hidden 
Layer
Dropout Rate
Activation Functions
Batch Size
Number of Epochs

DBN 

Learning Rate
Number of RBMs (Restricted 
Boltzmann Machines)
Number of Hidden Units in Each 
RBM
Dropout Rate
Activation Functions
Batch Size
Number of Epochs

Figure 2: Parameters of various DL models Figure 3: Sample data
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Figure 3 displays the first few rows of the input dataset. This 
allows us to observe the initial entries of the dataset and 
gain an understanding of its structure. The outcome will 
show columns and their corresponding values for the first 
few data points, providing insights into the dataset’s format, 
content, and organization. This preview helps assess the 
dataset’s quality, identify potential issues, and plan further 
data preprocessing or analysis tasks (Figure 4). 

The heatmap visually represents the correlation 
coefficient between two variables. Warm colors (closer to red) 
indicate positive correlations, where one variable’s increase 
corresponds to the other’s increase. Cool colors (closer to 
blue) represent negative correlations, meaning one variable’s 
increase corresponds to the other’s decrease. Correlation 
coefficients range from -1 to 1, with values closer to these 
extremes implying stronger relationships. Values close to 
0 signify weak correlations. Annotations in the cells assist 
in interpreting relationships between variables (Figure 5).

Discussion

Performance Analysis 
DL model effectiveness is assessed using key metrics: 
accuracy, precision, F1-score, and recall. Accuracy measures 
overall correctness, precision assesses positive prediction 
accuracy, F1-score balances precision and recall, and recall 
gauges true positive identification. Algorithms employed 
include CNN, LSTM, DNN, and DBN, each with its default 
hyperparameters. DBN excels in accuracy (0.92), precision 
(0.92), recall (0.92), F1-score (0.92), specificity (0.96), and 
ROC-AUC (0.97), surpassing other models (CNN, LSTM, DNN).

Figure 4: Number of classes

Figure 5: Correlation heatmap analysis

Figure 6: Performance metrics of different algorithms DL algorithms 

Table 4: Comparison of various optimized model with DL methods 

Metric Optimization 
model

CNN LSTM DNN DBN

Accuracy GS 0.95 0.94 0.96 0.95

  RS 0.96 0.93 0.95 0.96

  BO 0.95 0.92 0.96 0.96

  TPE 0.97 0.95 0.97 0.97

Precision GS 0.94 0.93 0.95 0.94

  RS 0.95 0.94 0.94 0.95

  BO 0.96 0.91 0.95 0.95

  TPE 0.96 0.94 0.96 0.96

Recall GS 0.94 0.91 0.93 0.93

  RS 0.95 0.92 0.94 0.94

  BO 0.93 0.9 0.93 0.94

  TPE 0.96 0.9 0.95 0.94

F1-Score GS 0.94 0.92 0.94 0.93

  RS 0.95 0.92 0.94 0.94

  BO 0.94 0.9 0.94 0.93

  TPE 0.96 0.93 0.95 0.95

Specificity GS 0.95 0.93 0.94 0.94

  RS 0.94 0.91 0.93 0.93

  BO 0.95 0.9 0.94 0.94

  TPE 0.95 0.92 0.94 0.94
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The chart visually depicts algorithm performance metrics 
(Accuracy, Precision, Recall, F1-Score, Specificity) for CNN, 
LSTM, DNN, and DBN in a single graph (S. Jeya et al., 2020). 
Colored polygons represent each algorithm, with vertices 
indicating metric values. This chart facilitates efficient cross-
metric and algorithm comparison (Figure 6).

Table 4 offer a comprehensive comparison of DL models 
utilizing various optimization techniques, including TPE, RS, 
BO, and GS. These table evaluate model performance based 
on critical metrics such as accuracy, precision, recall, F1-score, 
and specificity. TPE consistently stands out with the highest 
scores, showcasing its effectiveness in optimizing machine 
learning architectures, achieving a remarkable accuracy, 
precision, recall, and F1-score of 0.96 across different models. 
RS, BO, and GS methods also yield competitive results, 
emphasizing their utility in fine-tuning models for air quality 
classification.

Figure 7 displays multiple subplots, each dedicated 
to a specific metric. In each subplot, the x-axis represents 
optimization models, while the y-axis shows metric values. 
Lines connect marker points representing different model 
types, enabling straightforward performance comparisons 
across optimization techniques. This visual representation 
streamlines the assessment of how various machine learning 
models perform with different optimization methods, aiding 
in informed decision-making and model selection.

Conclusion
The paper introduces a novel approach to enhance the 
performance of DL models for air quality classification by 
integrating TPE into hyperparameter tuning processes 
for CNN, LSTM, DNN, and DBN models. This algorithm 
effectively improves model exploration and diversification. 
Extensive experiments are conducted using a substantial 
air quality dataset, comparing the proposed algorithm 
with conventional tuning methods such as GS, RS, and BO. 
Consistently across various scenarios, the TPE Algorithm 

emerges as the superior performer. Its exceptional 
performance is characterized by elevated classification 
accuracy and improved generalization capabilities. These 
outcomes underscore the algorithm’s potential in enhancing 
air quality classification models, aligning with environmental 
sustainability and resource management objectives. This 
research presents a promising solution for optimizing air 
quality classification by effectively merging state-of-the-
art TPE methodology with DL models. The implications 
of this approach are crucial for informed decision-making 
and resource-efficient environmental preservation. This 
research contributes significantly to the field, bridging the 
gap between cutting-edge optimization techniques and DL 
models, offering an avenue for more effective environmental 
and ecological conservation strategies.
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