Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.27Keywords:
Air quality, Deep learning models, Tree-structured parzen estimators, Hyperparameter tuning.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The research introduces an innovative approach to enhance deep learning models for air quality classification by integrating tree-structured Parzen estimators (TPE) into the hyperparameter tuning process. It applies this approach to CNN, LSTM, DNN, and DBN models and conducts extensive experiments using an air quality dataset, comparing it with grid search, random search, and genetic algorithm methods. The TPE algorithm consistently outperforms these methods, demonstrating improved classification accuracy and generalization. This approach’s potential extends to enriching water quality classification models, contributing to environmental sustainability and resource management. Bridging deep learning with TPE offers a promising solution for optimized air quality classification, supporting informed environmental preservation efforts.Abstract
How to Cite
Downloads
Similar Articles
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K Sreenivasulu, Sameer Yadav, G Pushpalatha, R Sethumadhavan, Anup Ingle, Romala Vijaya, Investigating environmental sustainability applications using advanced monitoring systems , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.