Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.48Keywords:
Python-based social science applications, High-performance computing systems, task and data parallelism, Optimization methodology, Machine learning model evaluationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research addresses the pressing need to optimize Python-based social science applications for high-performance computing (HPC)Abstract
systems, emphasizing the combined use of task and data parallelism techniques. The paper delves into a substantial body of research,
recognizing Python’s interpreted nature as a challenge for efficient social science data processing. The paper introduces a Python
program that exemplifies the proposed methodology. This program uses task parallelism with multi-processing and data parallelism
with dask to optimize data processing workflows. It showcases how researchers can effectively manage large datasets and intricate
computations on HPC systems. The research offers a comprehensive framework for optimizing Python-based social science applications
on HPC systems. It addresses the challenges of Python’s performance limitations, data-intensive processing, and memory efficiency.
Incorporating insights from a rich literature survey, it equips researchers with valuable tools and strategies for enhancing the efficiency
of their social science applications in HPC environments.
How to Cite
Downloads
Similar Articles
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Panda Aditi Ambarish, Kaushik Trivedi, Immersive learning: A virtual reality teaching model for enhancing english speaking skills , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Kamna Kandpal, Piyashi Dutta, P.Sasikala Ravichandran, Examining the relationship between motivation and incentives in the context of maternal health awareness: A study of Asha workers in Uttarakhand , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Punithavathy E, N. Priya, A resilience framework for fault-tolerance in cloud-based microservice applications , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.