Grapevine leaf species and disease detection using DNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.39Keywords:
Grapevine, Leaf disease, Species identification, Image classification, Max pooling.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The cultivation of grapes is one of India’s most important produce industries. The grapes comprise 1.2% of the country’s total produce production area. This accounts for 2.8% of the nation’s total fruit production. Maharashtra produces approximately 80% of India’s grapes, followed by Karnataka and Tamil Nadu. However, grape leaf maladies have impeded the growth of the grape industry and resulted in significant economic losses. Disease and pest control experts have, therefore, given considerable thought to identifying and analyzing grapevine leaf maladies. This article examines the image dataset of grapevine foliage. The dataset contains images of grapevine leaves infected with three distinct diseases: black, Esca (Black Measles), and leaf blight (Isariopsis Leaf Spot). This paper examines the efficacy of CNN-based algorithms for grapevine species identification and disease detection. The experimental findings demonstrate that the proposed model can accurately identify grape leaf varieties and their associated diseasesAbstract
How to Cite
Downloads
Similar Articles
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Anurag Tripathi, Shri Prakash, Prem Narayan Tripathi, Impact of SARS-CoV-2 (COVID-19) on the Nervous System: A Critical Review , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Manohar, T. P. Vijayakumar, Optimization of gluten-free bread using RSM (Design Expert) to study its textural and sensory properties , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Anitha Chandrashekhar, Shivali Bembalgi, Santhosh K. Malebennur, Serum Zinc and Copper Levels in Obese Adolescents , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sadanand Maurya, Manikant Tripathi, Karunesh K. Tiwari, Awadhesh K. Shukla, Isolation and molecular characterization of microbial isolates from Saryu river water , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Birhanu T Sisay, Jadu K. Agerchu, Gizachew W. Nuraga, Effects of bended NPSB fertilizer rates and varieties on growth and yield of garlic (Allium sativum L.) in Gummer district, Central Ethiopia , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.