Grapevine leaf species and disease detection using DNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.39Keywords:
Grapevine, Leaf disease, Species identification, Image classification, Max pooling.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The cultivation of grapes is one of India’s most important produce industries. The grapes comprise 1.2% of the country’s total produce production area. This accounts for 2.8% of the nation’s total fruit production. Maharashtra produces approximately 80% of India’s grapes, followed by Karnataka and Tamil Nadu. However, grape leaf maladies have impeded the growth of the grape industry and resulted in significant economic losses. Disease and pest control experts have, therefore, given considerable thought to identifying and analyzing grapevine leaf maladies. This article examines the image dataset of grapevine foliage. The dataset contains images of grapevine leaves infected with three distinct diseases: black, Esca (Black Measles), and leaf blight (Isariopsis Leaf Spot). This paper examines the efficacy of CNN-based algorithms for grapevine species identification and disease detection. The experimental findings demonstrate that the proposed model can accurately identify grape leaf varieties and their associated diseasesAbstract
How to Cite
Downloads
Similar Articles
- Jasleen Kaur, Sultan Singh, Vandana Madaan, Work-related stress among bank employees: A bibliometric analysis of research trends and patterns , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Naveen Kumar, Renu, Suresh Kumar Gahlawat, Anil Kumar, Vikram Delu, Pooja, Shekhar Anand, Suresh Chandra Singh, Arbind Acharya, Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.

