Grapevine leaf species and disease detection using DNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.39Keywords:
Grapevine, Leaf disease, Species identification, Image classification, Max pooling.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The cultivation of grapes is one of India’s most important produce industries. The grapes comprise 1.2% of the country’s total produce production area. This accounts for 2.8% of the nation’s total fruit production. Maharashtra produces approximately 80% of India’s grapes, followed by Karnataka and Tamil Nadu. However, grape leaf maladies have impeded the growth of the grape industry and resulted in significant economic losses. Disease and pest control experts have, therefore, given considerable thought to identifying and analyzing grapevine leaf maladies. This article examines the image dataset of grapevine foliage. The dataset contains images of grapevine leaves infected with three distinct diseases: black, Esca (Black Measles), and leaf blight (Isariopsis Leaf Spot). This paper examines the efficacy of CNN-based algorithms for grapevine species identification and disease detection. The experimental findings demonstrate that the proposed model can accurately identify grape leaf varieties and their associated diseasesAbstract
How to Cite
Downloads
Similar Articles
- S. L. Nama, M. K. Goyal, G. Rathore, C. Ram, A Coconut Fruit Fossil (Cocos L.) from the Giral Lignite Mine of Akli Formation in Western Rajasthan, India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Vikas Yadav, Parul Nangia, Bisphenol-A Induced Changes in Blood Indices of Channa punctatus and Alleviation with Vitamin C , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana Bansal, On the Biology of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Deepa, Anju Panwar, Yougesh Kumar, Redescription of Procamallanus (Spirocamallanus) mysti (Karve, 1952) Infecting Freshwater Fishes from Muzaffarnagar, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ajay Kumar, Sunder S. Arya, Neha Yadav, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Kumar, Assessing the role of EDTA and SA in mustard under Cd and Pb stress , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Vijaylaxmi, Nirmala Koranga, Atal Bihari Bajpai, Physical Properties of Potyvirus on Chilli (Capsicum annuum) of Doon Valley in Uttarakhand , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.

