Grapevine leaf species and disease detection using DNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.39Keywords:
Grapevine, Leaf disease, Species identification, Image classification, Max pooling.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The cultivation of grapes is one of India’s most important produce industries. The grapes comprise 1.2% of the country’s total produce production area. This accounts for 2.8% of the nation’s total fruit production. Maharashtra produces approximately 80% of India’s grapes, followed by Karnataka and Tamil Nadu. However, grape leaf maladies have impeded the growth of the grape industry and resulted in significant economic losses. Disease and pest control experts have, therefore, given considerable thought to identifying and analyzing grapevine leaf maladies. This article examines the image dataset of grapevine foliage. The dataset contains images of grapevine leaves infected with three distinct diseases: black, Esca (Black Measles), and leaf blight (Isariopsis Leaf Spot). This paper examines the efficacy of CNN-based algorithms for grapevine species identification and disease detection. The experimental findings demonstrate that the proposed model can accurately identify grape leaf varieties and their associated diseasesAbstract
How to Cite
Downloads
Similar Articles
- Manu Narendra Dev Purohit, Deepika Yadav, Naresh Vyas, Population Studies on Snails , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Abhinav P. Yadav, Shubham Gudadhe, Sarika Kumari, Sadanand Maurya, Manikant Tripathi, Awadhesh K. Shukla, Assessment of heavy metal contamination in Trifolium alexandrium and Spinacia oleracea using ICP-MS: A comparative analysis across different districts in eastern Uttar Pradesh , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rajesh Rayal, Riya Malik, Sanjay Madan, Anju Thapliyal, Drifting-Density and Diversity of Aquatic Mites in the Spring- Fed Stream Heval from Garhwal Himalaya , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mumtaz Ahmed, Anshu Chaudhary, Farooq Ahmed, Yougesh Kumar, Hirdaya S. Singh, Checklist of Helminth Parasites of Cyprinids from Poonch River and its Tributaries, Jammu and Kashmir, India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- P. Rajkumar, B. Vijay Bhaskar, Assessing the impact of indoor air pollution on respiratory health: A survey of home residents in rural area , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.

