Grapevine leaf species and disease detection using DNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.39Keywords:
Grapevine, Leaf disease, Species identification, Image classification, Max pooling.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The cultivation of grapes is one of India’s most important produce industries. The grapes comprise 1.2% of the country’s total produce production area. This accounts for 2.8% of the nation’s total fruit production. Maharashtra produces approximately 80% of India’s grapes, followed by Karnataka and Tamil Nadu. However, grape leaf maladies have impeded the growth of the grape industry and resulted in significant economic losses. Disease and pest control experts have, therefore, given considerable thought to identifying and analyzing grapevine leaf maladies. This article examines the image dataset of grapevine foliage. The dataset contains images of grapevine leaves infected with three distinct diseases: black, Esca (Black Measles), and leaf blight (Isariopsis Leaf Spot). This paper examines the efficacy of CNN-based algorithms for grapevine species identification and disease detection. The experimental findings demonstrate that the proposed model can accurately identify grape leaf varieties and their associated diseasesAbstract
How to Cite
Downloads
Similar Articles
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Prashant Saxena, Kapil Kumar, P. V. Malik, Jyoti Saxena, EFFECT OF PHYSICO-CHEMICAL CHARACTERISTICS ON CYANOBACTERIAL DIVERSITY IN THREE FISH CULTURE PONDS OF MEERUT REGION , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- A. Jabeen, AR Mohamed Shanavas, Bradley Terry Brownboost and Lemke flower pollinated resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Afroz Alam, Krishna Kumar Rawat, Praveen Kumar Verma, Sonu Yadav, Bryodiversity of Eastern Ghats (India) , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Shamba Gowda, AR Chethan Kumar, S. Srinivasaragavan, Scholarly communication behavior in forestry research: A bibliometric analysis of global publications , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- K. P. SINGH, NIDHI TRIPATHI, ANTIPSYCHOTIC MEDICATION DURING PREGNANCY AND POSSIBLE BIRTH DEFECTS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Sweta Sain, Nilima Kumari, BN Tirpathi, ETHNOBOTANICAL STUDIES ON MEDICINAL PLANTS OF BANASTHALI REGION OF TONK DISTRICT, RAJASTHAN (INDIA) , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.

