Automatic liver tumor segmentation from CT images using random forest algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.19Keywords:
Random forest, Convolutional neural network, Artificial neural network, Liver tumor, Segmentation, Gabor filter.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automatic liver segmentation is challenging, and the tumor segmenting process adds more complexity. Based on the grey levels and shape, separating the liver and tumor from abdominal CT images is critical. In our paper suggests a more effective approach by using Gabor features (GF) to segment liver tumors from CT images and three alternative neural network algorithms to address these problems: RF, CNN and ANN. This thesis uses the same collection of classifiers and GF to first segment a variety of Gabor liver images. The organ (liver) is then extracted from an abdominal CT image using liver segmentation, which is done by three classifiers: ANN, CNN, RF trained on Gabor filter and the tumor segmentation is done by the human visual system (HVS). For pixel-wise segmentation, reliable and accurate ML techniques were used. For the liver segmentation, the classification accuracy was 99.55, 97.88 and 98.13% for RF, CNN and ANN, respectively. From the extracted image of liver, the classification accuracy for tumor was 99.52, 98.07 and 98.45% for RF, CNN and ANN, respectively.Abstract
How to Cite
Downloads
Similar Articles
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dinesh Kumar Verma, Ruchi Tripathi, Vijai Krishna Dsa, Rakesh Kumar Pandey, Histopathological Changes in Liver and Kidney of Heteropneustes fossilis (Bloch) on Chlorpyrifos Exposure , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Geeta S Desai, Santosh Hajare, Sangeeta Kharde, Prevalence of non-alcoholic steatohepatitis in a general population of North Karnataka , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

