Automatic liver tumor segmentation from CT images using random forest algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.19Keywords:
Random forest, Convolutional neural network, Artificial neural network, Liver tumor, Segmentation, Gabor filter.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automatic liver segmentation is challenging, and the tumor segmenting process adds more complexity. Based on the grey levels and shape, separating the liver and tumor from abdominal CT images is critical. In our paper suggests a more effective approach by using Gabor features (GF) to segment liver tumors from CT images and three alternative neural network algorithms to address these problems: RF, CNN and ANN. This thesis uses the same collection of classifiers and GF to first segment a variety of Gabor liver images. The organ (liver) is then extracted from an abdominal CT image using liver segmentation, which is done by three classifiers: ANN, CNN, RF trained on Gabor filter and the tumor segmentation is done by the human visual system (HVS). For pixel-wise segmentation, reliable and accurate ML techniques were used. For the liver segmentation, the classification accuracy was 99.55, 97.88 and 98.13% for RF, CNN and ANN, respectively. From the extracted image of liver, the classification accuracy for tumor was 99.52, 98.07 and 98.45% for RF, CNN and ANN, respectively.Abstract
How to Cite
Downloads
Similar Articles
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Seema Bhakuni, Application of artificial intelligence on human resource management in information technolgy industry in India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

