Automatic liver tumor segmentation from CT images using random forest algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.19Keywords:
Random forest, Convolutional neural network, Artificial neural network, Liver tumor, Segmentation, Gabor filter.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automatic liver segmentation is challenging, and the tumor segmenting process adds more complexity. Based on the grey levels and shape, separating the liver and tumor from abdominal CT images is critical. In our paper suggests a more effective approach by using Gabor features (GF) to segment liver tumors from CT images and three alternative neural network algorithms to address these problems: RF, CNN and ANN. This thesis uses the same collection of classifiers and GF to first segment a variety of Gabor liver images. The organ (liver) is then extracted from an abdominal CT image using liver segmentation, which is done by three classifiers: ANN, CNN, RF trained on Gabor filter and the tumor segmentation is done by the human visual system (HVS). For pixel-wise segmentation, reliable and accurate ML techniques were used. For the liver segmentation, the classification accuracy was 99.55, 97.88 and 98.13% for RF, CNN and ANN, respectively. From the extracted image of liver, the classification accuracy for tumor was 99.52, 98.07 and 98.45% for RF, CNN and ANN, respectively.Abstract
How to Cite
Downloads
Similar Articles
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nandini S, Nagabushanam M, Nandeesh G S, Sundaresha M P, Pramodkumar S, Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

