A network for collaborative detection of intrusions in smart cities using blockchain technology
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.50Keywords:
intrusion detection, machine learning, artificial intelligence, cybersecurity, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The field of cybersecurity has undergone significant transformation with the integration of machine learning (ML) and artificialAbstract
intelligence (AI) techniques into intrusion detection systems (IDS). This research article presents a comprehensive survey spanning
the past five years, exploring the symbiotic relationship between ML, AI, and intrusion detection. The survey traverses seminal studies,
methodologies, and results, shedding light on an evolving landscape characterized by innovation and advancement. The classification
report’s key metrics—precision, recall, F1-score, and support. High precision values point to accurate positive predictions, while recall
values showcase the model’s ability to capture true instances. The F1-score signifies the equilibrium between precision and recall. Thesemetrics collectively underscore the model’s proficiency in identifying and differentiating intrusion classes, reinforcing its real-worldapplicability. In conclusion, this research article presents a holistic view of ML and AI integration with intrusion detection, offeringinsights into innovative contributions and their implications for cybersecurity. While highlighting existing research gaps, the articleunderscores the potential of AI-driven intrusion detection systems and advocates for ongoing advancements to fortify digital securityagainst emerging threats.
How to Cite
Downloads
Similar Articles
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sohini Bhattacharyya, Ajay Kumar Harit, Manoj Singh, Urvashi Sharma, Chaitramayee Pradhan, Occurrence of Antibiotic Resistance in Lotic Ecosystems , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Assessing students’ perception of the academic features of the Gyankunj Project , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Hannah Ayaba Tanye, Henry Akwetey Matey, Isaac Asampana, Albert Akanlisikum Akanferi, Douglas Yeboah , Augustina Dede Agor, Assessing the information security awareness among Ghanaian University students , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

