Occurrence of Antibiotic Resistance in Lotic Ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.61Keywords:
Antibiotic resistance, Antibiotic resistance genes (ARGs), Antibiotic resistance bacteria (ARBs), Lotic ecosystems.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Antibiotic resistance is a matter of global public health concern. Antibiotic resistance is disseminated by antibiotic resistance genes (ARGs) which are carried by antibiotic resistance bacteria (ARBs). Lotic ecosystems like rivers which has flowing water can spread ARGs frommone location to another. Such dispersion of ARGs can also move through food chains and food webs making the spread of antibiotic resistance more complex and widespread. Detection of these ARGs is important for understanding the origin and pathways of antibiotic resistance in our waterways. Both culturing and non-culturing methods can be used for detection of these ARGs. Overall, understanding the sources, assessing the presence, and determining the dissemination of antibiotic resistance is important for us to understand the level of antibioticpollution in our waterbodies.Abstract
How to Cite
Downloads
Similar Articles
- Varsha Kachhela, Jalpa Rank, Charmy Kothari, Screening of environmental bacteria for multiple dye decolorization capabilities in textile wastewater , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anil Kumar, Aditya Kumar, Synthesis, spectral characterization and antimicrobial effect of Cu(II) complexes of schiff Base Ligand, N-(3,4- dimethoxybenzylidene)-3-aminopyridine (DMBAP) Derived from 3,4-dimethoxybenzaldehyde and 3-aminopyridine , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- JOSHI GK, INDUSTRIAL IMPORTANCE OF HALOPHILIC BACTERIA , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Juhi Chaudhary, Dimple Raina, Pallavi Rawat, Vidya Chauhan, Neha Chauhan, GC-MS Profiling and Analysis of Bioprotective Properties of Terminalia chebula against Non-Fermenting Gram-Negative Bacteria Isolated from Tertiary Care Hospital , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, TRANSGENIC APPROACH TOWARDS DEVELOPMENT OF COLD STRESS TOLERANT VEGETABLES FOR HIGH ALTITUDE AREAS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Sadanand Maurya, Manikant Tripathi, Karunesh K. Tiwari, Awadhesh K. Shukla, Isolation and molecular characterization of microbial isolates from Saryu river water , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kusum Sharma, Ranjan Singh, Prem N Tripathi, Isolation and enumeration of bacteria from common green vegetables available in nearby market at Ayodhya , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- S.K. Sawale, N.V. Phirke, Exploring the Possibilities of Using Bradyrhizobium japonicum as a Nitrogen Fixing Bioresource in Soybean Cultivation in Purna-river Basin , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper