A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.10Keywords:
Renewable Energy System, Hybrid System, TLBO algorithm, Standalone RES, PV SystemDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Depletion of fossil fuels, increase in fuel prices, and global warming have motivated the utilization of renewable energy resources like solar and wind, as they are eco-friendly. Due to the stochastic nature of PV and wind, using a single energy source is not reliable and uneconomical as it results in system over-sizing. Integration of renewable sources such as PV and wind can significantly increase energy reliability compared to single-source systems. PV and wind hybrid systems are economically advantageous in isolated areas for providing continuous and quality power due to their inherent complementary characteristics and availability in most areas. Utilizing grid-tied renewable energy resources is also economical and reliable to overcome power outages in remote areas. This study proposes a TLBO algorithm for optimal design and sizing of HRES in both standalone and grid-connected modes due to its simplicity and fewer parameters to adjust. The objective of the optimization problem in standalone, as well as the grid-connected mode, is to minimize the LCE and maximize the system reliability and renewable energy integration while satisfying the system constraints and load demand. The number of PV panels, wind turbines, and batteries is taken as decision variables optimally determined by the proposed optimization algorithm. The simulations are carried out in MATLAB software. The effectiveness of TLBO in designing and sizing the hybrid system is investigated, and its performance is compared with other well-known optimization algorithms PSO; the TLBO provides the best optimal solution, better performance, and faster convergence speed compared to different algorithmsAbstract
How to Cite
Downloads
Similar Articles
- Sonal R. Vasant, Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Pattunnarajam, Janani G, A. Vijayaraj, Sathiya Priya S, Enhanced routing strategy of wireless sensor network based on fifth generation communication technology , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 27 28 29 30 31 32 33 34 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

