Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.21Keywords:
Mobile Network, Wireless Network, Energy Consumption, Multiple Sleeps, N- Policy, Finite capacity.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The primary purpose of green communication is to reduce energy use. The base station (BS) is a radio receiver/transmitter that acts as the wireless network’s hub. It serves as a link between a wired and wireless network. To receive and transmit messages, BS uses a lot of energy. The use of effective sleep and wake-up/setup activities with an acceptable delay helps reduce base station power consumption. In this paper, the BS’s service process is modelled as a finite buffer queue with close down, sleep, and setup. After a certain number of user requests (URs) have accumulated in the system, to awaken the BS from multiple sleeps (MS) the -Policy is implemented. To produce probability generating functions, the supplementary variable approach is applied. The UR’s mean delay and the BS’s mean power consumption are calculated using simulation. According to computational studies, multiple sleeps with -policy consume less power than multiple sleeps without -policy.Abstract
How to Cite
Downloads
Similar Articles
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nilay Shukla, Ketan Desai, Study on the right to education with special references to public private partnerships , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.