Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.21Keywords:
Mobile Network, Wireless Network, Energy Consumption, Multiple Sleeps, N- Policy, Finite capacity.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The primary purpose of green communication is to reduce energy use. The base station (BS) is a radio receiver/transmitter that acts as the wireless network’s hub. It serves as a link between a wired and wireless network. To receive and transmit messages, BS uses a lot of energy. The use of effective sleep and wake-up/setup activities with an acceptable delay helps reduce base station power consumption. In this paper, the BS’s service process is modelled as a finite buffer queue with close down, sleep, and setup. After a certain number of user requests (URs) have accumulated in the system, to awaken the BS from multiple sleeps (MS) the -Policy is implemented. To produce probability generating functions, the supplementary variable approach is applied. The UR’s mean delay and the BS’s mean power consumption are calculated using simulation. According to computational studies, multiple sleeps with -policy consume less power than multiple sleeps without -policy.Abstract
How to Cite
Downloads
Similar Articles
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Appu, How does brand equity influence the intent of e-bike users? Evidence from Chennai city , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Suresha S, Corporate bonds vis-a-vis bond market: Global economy , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.