Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.21Keywords:
Mobile Network, Wireless Network, Energy Consumption, Multiple Sleeps, N- Policy, Finite capacity.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The primary purpose of green communication is to reduce energy use. The base station (BS) is a radio receiver/transmitter that acts as the wireless network’s hub. It serves as a link between a wired and wireless network. To receive and transmit messages, BS uses a lot of energy. The use of effective sleep and wake-up/setup activities with an acceptable delay helps reduce base station power consumption. In this paper, the BS’s service process is modelled as a finite buffer queue with close down, sleep, and setup. After a certain number of user requests (URs) have accumulated in the system, to awaken the BS from multiple sleeps (MS) the -Policy is implemented. To produce probability generating functions, the supplementary variable approach is applied. The UR’s mean delay and the BS’s mean power consumption are calculated using simulation. According to computational studies, multiple sleeps with -policy consume less power than multiple sleeps without -policy.Abstract
How to Cite
Downloads
Similar Articles
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kamna Kandpal, Piyashi Dutta, P.Sasikala Ravichandran, Examining the relationship between motivation and incentives in the context of maternal health awareness: A study of Asha workers in Uttarakhand , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Chaitanya A. Kulkarni, Reema Joshi, Isha Katariya, Tushar Palekar, A scoping review of influence of lifestyle factors on menstrual disorders in menstruating women , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- James L T Thanga, Ashley Lalremruati, Agent’s roles and perspectives of life insurance market in North-East India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nilay Shukla, Ketan Desai, Study on the right to education with special references to public private partnerships , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 22 23 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.

