Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.21Keywords:
Mobile Network, Wireless Network, Energy Consumption, Multiple Sleeps, N- Policy, Finite capacity.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The primary purpose of green communication is to reduce energy use. The base station (BS) is a radio receiver/transmitter that acts as the wireless network’s hub. It serves as a link between a wired and wireless network. To receive and transmit messages, BS uses a lot of energy. The use of effective sleep and wake-up/setup activities with an acceptable delay helps reduce base station power consumption. In this paper, the BS’s service process is modelled as a finite buffer queue with close down, sleep, and setup. After a certain number of user requests (URs) have accumulated in the system, to awaken the BS from multiple sleeps (MS) the -Policy is implemented. To produce probability generating functions, the supplementary variable approach is applied. The UR’s mean delay and the BS’s mean power consumption are calculated using simulation. According to computational studies, multiple sleeps with -policy consume less power than multiple sleeps without -policy.Abstract
How to Cite
Downloads
Similar Articles
- Arunachalaprabu G, Fathima Bibi K, A pattern-driven Huffman encoding and positional encoding for DNA compression , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Saguber Ali S Hameed, Prabakaran. J, A study and analysis of e-commerce factors influencing ecotourism online booking behavior , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kamna Kandpal, Piyashi Dutta, P.Sasikala Ravichandran, Examining the relationship between motivation and incentives in the context of maternal health awareness: A study of Asha workers in Uttarakhand , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Shubharani Muragod, Sangeeta Kharde, Premenstrual syndrome among adolescent girls and its influence on academic performance- A cross-sectional study , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G Gayathri Devi, R Radha, Smart alerting services: Safeguarding women and children in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ankush Wadhwa, Sanjay Nandal, Development of an Index in Social Science: A Systematic Literature Review , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.

