Extended Kalman filter-based prognostic of actuator degradation in two tank system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.10Keywords:
Predictive Maintenance, Extended Kalman Filter, Gamma Process.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rapid growth in the industries need an effective predictive maintenance policy. Failure in the equipment decreases the production rate and thereby, causing a loss to the industry. The equipment especially, the actuator is operated continuously in the industries in order to achieve the desired production rate. Actuator is the key element which undergoes degradation due to frequent control actions. However, degradation is mainly influenced by different operating conditions and other environmental factors. This decreases the lifetime of the equipment and also it increases the maintenance cost. This problem is addressed by carrying out the reliability studies on the actuator by using Gamma process. It is used to describe the system degradation. In this work, Gamma process based actuator modelling is used to study the deterioration in the actuator. The gamma parameters such as shape and scale parameters are the deciding factors describing the level of degradation in the system. It is then applied to two tank feedback control system. Extended version of Kalman filter estimates the state of noisy measurements which describes the fault trend characteristics in the system. Finally, the evolution of actuator capacity in presence of fault is analyzed and simulated in MATLAB environment.Abstract
How to Cite
Downloads
Similar Articles
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Akila L, Comparative study on Datafication and Digitization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Vijai K. Visvanathan, Karthikeyan Palaniswamy, Thanarajan Kumaresan, Green ammonia: catalysis, combustion and utilization strategies , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, An inventory model on the impact of green investment with deteriorating items and planned back orders for economic efficiency and environmental sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

