Extended Kalman filter-based prognostic of actuator degradation in two tank system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.10Keywords:
Predictive Maintenance, Extended Kalman Filter, Gamma Process.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rapid growth in the industries need an effective predictive maintenance policy. Failure in the equipment decreases the production rate and thereby, causing a loss to the industry. The equipment especially, the actuator is operated continuously in the industries in order to achieve the desired production rate. Actuator is the key element which undergoes degradation due to frequent control actions. However, degradation is mainly influenced by different operating conditions and other environmental factors. This decreases the lifetime of the equipment and also it increases the maintenance cost. This problem is addressed by carrying out the reliability studies on the actuator by using Gamma process. It is used to describe the system degradation. In this work, Gamma process based actuator modelling is used to study the deterioration in the actuator. The gamma parameters such as shape and scale parameters are the deciding factors describing the level of degradation in the system. It is then applied to two tank feedback control system. Extended version of Kalman filter estimates the state of noisy measurements which describes the fault trend characteristics in the system. Finally, the evolution of actuator capacity in presence of fault is analyzed and simulated in MATLAB environment.Abstract
How to Cite
Downloads
Similar Articles
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Suresh Kumar, AGRO-WASTE MANAGEMNT BY VERMICOMPOSTING USING EISENIA FETIDA AND PERIONYX SANSIBARICUS EARTHWORMS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Rama Rao J.V.G, Raja Gopal A.N.V.J, Ponnaganti S. Prasad, Illa V. Ram, Muthuvel B, Power quality improvement in BLDC motor drive using PFC converter , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

