Extended Kalman filter-based prognostic of actuator degradation in two tank system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.10Keywords:
Predictive Maintenance, Extended Kalman Filter, Gamma Process.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rapid growth in the industries need an effective predictive maintenance policy. Failure in the equipment decreases the production rate and thereby, causing a loss to the industry. The equipment especially, the actuator is operated continuously in the industries in order to achieve the desired production rate. Actuator is the key element which undergoes degradation due to frequent control actions. However, degradation is mainly influenced by different operating conditions and other environmental factors. This decreases the lifetime of the equipment and also it increases the maintenance cost. This problem is addressed by carrying out the reliability studies on the actuator by using Gamma process. It is used to describe the system degradation. In this work, Gamma process based actuator modelling is used to study the deterioration in the actuator. The gamma parameters such as shape and scale parameters are the deciding factors describing the level of degradation in the system. It is then applied to two tank feedback control system. Extended version of Kalman filter estimates the state of noisy measurements which describes the fault trend characteristics in the system. Finally, the evolution of actuator capacity in presence of fault is analyzed and simulated in MATLAB environment.Abstract
How to Cite
Downloads
Similar Articles
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing cloud data security: User-centric approaches and advanced mechanisms , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rama Rao J.V.G, Raja Gopal A.N.V.J, Ponnaganti S. Prasad, Illa V. Ram, Muthuvel B, Power quality improvement in BLDC motor drive using PFC converter , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- G. C. Sowparnika, D. A. Vijula, Modeling and control of boiler in thermal power plant using model reference adaptive control , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jonah, Danush Kumar SM, Yugeshkrishnan M, Santhoshkumar K, Shahid Gaffa, Satellite hardfacing of mild steel using robotic mig welding , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.