Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.247Keywords:
Hand Gesture, Machine Learning, ASL Data Set, Convolutional Neural Network;Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Hand gestures are a type of non-verbal communication that uses visible body movements to convey important messages. This paper presents a much better approach of hand gesture prediction. Image Identification is an important step in most of the modern hand gesture prediction system. A convolutional neural network are used for improving the accuracy of the system. Proposed system tested for large number of hand gesture images using Tensor flow tool . The convolutional neural network (ConvNet) is a deep learning algorithm for learning and classifying hand gestures and achieved accuracy 93.61%.Abstract
How to Cite
Downloads
Similar Articles
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Selvi, T. S. Poornappriya, R. Balasubramani, Cloud computing research productivity and collaboration: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Bayelign A. Zelalem, Ayalew A. Abebe, Evaluating supply chain management practice among micro and small manufacturing enterprise in southwest, Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Priyanka P, Sabu Sebastian, Haseena C., Bijumon R., Shaju K., Gafoor I., Sangeeth S. J., Multi-fuzzy set similarity measures using S and T operations , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rajesh Kumar Singh, Genetic Variability in Aromatic Rice , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper