Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.247Keywords:
Hand Gesture, Machine Learning, ASL Data Set, Convolutional Neural Network;Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Hand gestures are a type of non-verbal communication that uses visible body movements to convey important messages. This paper presents a much better approach of hand gesture prediction. Image Identification is an important step in most of the modern hand gesture prediction system. A convolutional neural network are used for improving the accuracy of the system. Proposed system tested for large number of hand gesture images using Tensor flow tool . The convolutional neural network (ConvNet) is a deep learning algorithm for learning and classifying hand gestures and achieved accuracy 93.61%.Abstract
How to Cite
Downloads
Similar Articles
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Rukmani, C. Jayanthi, Trust and security in wireless sensor networks: A literature review of approaches for malicious node detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing cloud data security: User-centric approaches and advanced mechanisms , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rajesh Kumar Singh, Genetic Variability in Aromatic Rice , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper