Convergence of Bisection Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.14Keywords:
Bisection method, convergence, stopping tolerance, error, percentage error, computer program, iterations.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fourth roots of the natural numbers from 1 to 30 have been calculated by Bisection method in the interval [0, 3] using stopping tolerance 0f 0.00001. Calculated roots have been compared with the actual values of roots to obtain error and percentage error in the calculated roots. Numerical rate of convergence has also been calculated in the determination of each fourthroot. The highest numerical rate of convergence of Bisection method has been observed in the calculation of fourth root of 2 and is equal to 1.754385964912. The lowest numerical rate of convergence of Bisection method has been observed in the calculation of fourth roots of 1, 3, -8, 10, 12 and is equal to 1.333333333333. Average error, average percentage error and average numerical rate of convergence of Bisection method have been found to be 0.000000062635, 0.000003048055 and 1.458082183940 respectivelyAbstract
How to Cite
Downloads
Similar Articles
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pankaj Kumar, Ambrish Pandey, Rajendrakumar Anayath, Comparative study of print quality attributes on bio-based biodegradable plastic using flexography and gravure printing process , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kshema Manu, Malathi S, A Comprehensive Study on Addressing Trust Erosion in Multimedia in The Indian Context , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Kalyani K., Praveen Kumar T. D., Roopa A. N., AI-based tools for enhancing reflective practice and self-efficacy in pre-service teachers , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- R. Mercy, T. Lucia Agnes Beena, CATSEM: A Climate-Aware Time-Series Ensemble Model for Enhanced Paddy Yield Prediction , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sharayu Mirasdar, Mangesh Bedekar, Knowledge graphs for NLP: A comprehensive analysis , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lavkush Pandey, Trilokinath, Convergence of the Method of False Position , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper

