Convergence of Bisection Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.14Keywords:
Bisection method, convergence, stopping tolerance, error, percentage error, computer program, iterations.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fourth roots of the natural numbers from 1 to 30 have been calculated by Bisection method in the interval [0, 3] using stopping tolerance 0f 0.00001. Calculated roots have been compared with the actual values of roots to obtain error and percentage error in the calculated roots. Numerical rate of convergence has also been calculated in the determination of each fourthroot. The highest numerical rate of convergence of Bisection method has been observed in the calculation of fourth root of 2 and is equal to 1.754385964912. The lowest numerical rate of convergence of Bisection method has been observed in the calculation of fourth roots of 1, 3, -8, 10, 12 and is equal to 1.333333333333. Average error, average percentage error and average numerical rate of convergence of Bisection method have been found to be 0.000000062635, 0.000003048055 and 1.458082183940 respectivelyAbstract
How to Cite
Downloads
Similar Articles
- Lavkush Pandey, Trilokinath, Convergence of the Method of False Position , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ahmed Mustefa, Ethiopian Voluntary Resettlement Programme-Lesson to Learn , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sreenath M.V. Reddy, D. Annapurna, Anand Narasimhamurthy, Influence node analysis based on neighborhood influence vote rank method in social network , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Susai Raj, A. Edward William Benjamin, Evaluating the effectiveness of academic resilience intervention for at-risk students at higher secondary level , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lavkush Pandey, Trilokinath, Convergence of the Method of False Position , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper