Convergence of Bisection Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.14Keywords:
Bisection method, convergence, stopping tolerance, error, percentage error, computer program, iterations.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fourth roots of the natural numbers from 1 to 30 have been calculated by Bisection method in the interval [0, 3] using stopping tolerance 0f 0.00001. Calculated roots have been compared with the actual values of roots to obtain error and percentage error in the calculated roots. Numerical rate of convergence has also been calculated in the determination of each fourthroot. The highest numerical rate of convergence of Bisection method has been observed in the calculation of fourth root of 2 and is equal to 1.754385964912. The lowest numerical rate of convergence of Bisection method has been observed in the calculation of fourth roots of 1, 3, -8, 10, 12 and is equal to 1.333333333333. Average error, average percentage error and average numerical rate of convergence of Bisection method have been found to be 0.000000062635, 0.000003048055 and 1.458082183940 respectivelyAbstract
How to Cite
Downloads
Similar Articles
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lavkush Pandey, Trilokinath, Convergence of the Method of False Position , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper