Convergence of Bisection Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.14Keywords:
Bisection method, convergence, stopping tolerance, error, percentage error, computer program, iterations.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fourth roots of the natural numbers from 1 to 30 have been calculated by Bisection method in the interval [0, 3] using stopping tolerance 0f 0.00001. Calculated roots have been compared with the actual values of roots to obtain error and percentage error in the calculated roots. Numerical rate of convergence has also been calculated in the determination of each fourthroot. The highest numerical rate of convergence of Bisection method has been observed in the calculation of fourth root of 2 and is equal to 1.754385964912. The lowest numerical rate of convergence of Bisection method has been observed in the calculation of fourth roots of 1, 3, -8, 10, 12 and is equal to 1.333333333333. Average error, average percentage error and average numerical rate of convergence of Bisection method have been found to be 0.000000062635, 0.000003048055 and 1.458082183940 respectivelyAbstract
How to Cite
Downloads
Similar Articles
- Vaishali P. Kuralkar, Prabodh Khampariya, Shashikant M. Bakre, Study and analysis of the stochastic harmonic distortion caused by multiple converters in the power system (micro-grid) , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Sweta Jain, Jacob Joseph Kalapurackal, Green Innovation, Pressure, Green Training, and Green Manufacturing: Empirical evidence from the Indian apparel export industry , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- N Archana, R Aravind Babu, Fault-tolerant reconfigurable second-life battery system using cascaded DC- DC converter , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Nithya Raju , Shruthi Deivigarajan, Sindhuja Santhakumar, Sneha Balamurugan, Challenges encountered by healthcare professionals in monitoring adverse events due to medical devices-A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sadanand Maurya, Manikant Tripathi, Karunesh Kumar Tiwari, Awadhesh Kumar Shukla, Analyses of water quality using different physico-chemical parameters: A study of Saryu river , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pragya Sharma, Anupriya Roy Srivastava, Cultural syncretism in Jhumpa Lahiri’s “Only Goodness” , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lavkush Pandey, Trilokinath, Convergence of the Method of False Position , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper