Convergence of the Method of False Position
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.13Keywords:
Method of false position, rate of convergence, percentage error, trend, algorithm, accuracy, iterations.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The method of false position has been applied to calculate the fourth roots of the natural numbers from 1 to 30 in the interval [0, 3] with the stopping tolerance of 0.00001 using C++ computer program. The minimum error 0.000000029282 and minimum percentage error 0.000001251170 have been obtained in the determination of fourth roots of 30. The maximum error 0.000002324581 and maximum percentage error 0.000232458100 have been obtained in the determination of fourth roots of 1. The average value of the error is 0.000000392037 and the average value of percentage error is 0.000027500512. Minimum, maximum and average values the numerical rate of convergence have been found to be 0.239808153477, 1.851851851852 and 1.197514787730 respectively.Abstract
How to Cite
Downloads
Similar Articles
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Financial strategy and private commercial banks’ profitability in the emerging market: Evidence from Ethiopia , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Neetu Singh, Ravindra Kumar Singh, Diazinon Effect on Behavior and Morphology of Catfish Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Murugaraju P, A. Edward William Benjamin, Efficacy of multimedia courseware in achievement in Mathematics , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Modenisha U, Ritha. W, Fueling Sustainability: A Cost-Benefit Analysis of RDF and Sewage Sludge as Alternative Fuels in Cement Production , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- MRINAL CHANDRA, “SPECTRAL STUDIES & ANTIMICROBIAL STUDIES ON Cu(II) WITH SCHIFF BASE CONTAINING SNS DONOR LIGANDS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
<< < 20 21 22 23 24 25 26 27 28 29 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lavkush Pandey, Trilokinath, Convergence of Bisection Method , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper

