Convergence of the Method of False Position
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.13Keywords:
Method of false position, rate of convergence, percentage error, trend, algorithm, accuracy, iterations.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The method of false position has been applied to calculate the fourth roots of the natural numbers from 1 to 30 in the interval [0, 3] with the stopping tolerance of 0.00001 using C++ computer program. The minimum error 0.000000029282 and minimum percentage error 0.000001251170 have been obtained in the determination of fourth roots of 30. The maximum error 0.000002324581 and maximum percentage error 0.000232458100 have been obtained in the determination of fourth roots of 1. The average value of the error is 0.000000392037 and the average value of percentage error is 0.000027500512. Minimum, maximum and average values the numerical rate of convergence have been found to be 0.239808153477, 1.851851851852 and 1.197514787730 respectively.Abstract
How to Cite
Downloads
Similar Articles
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V. K. Goswami, Pigeonpea (Cajanus cajan L.) growth and yield with varying spacing and fertilizer , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Anli Suresh, Sandhiya M., Investment model on the causation of inclining attributes towards bank investment options in the investor’s portfolio , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Mudassir Peeran A, A.R. Mohamed Shanavas, A Hybrid Post-Quantum Cryptography and Machine Learning and Framework for Intrusion Detection and Downgrade Attack Prevention throughout PQC Migration , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- G. Tripathi, Impact of Nanomaterials on Earthwoms : A New Threat to Megadrili Resources , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 23 24 25 26 27 28 29 30 31 32 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lavkush Pandey, Trilokinath, Convergence of Bisection Method , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper

