Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.34Keywords:
Cooking oil, deep frying, free radicals, nutritional value, rancidityDimensions Badge
Issue
Section
Oils and fats hold paramount importance in our diet. Today, as the expense factor is significant, the population finds itself repeatedly using the same fried oil. Reusing cooking oils increases the risk to type-2 diabetes, acidity, and the presence of free radicals in the body which causes inflammation. The present study aims to showcase the numerical data of the deleterious effects caused by reusing oils, and thereby educate the population to halt this practise. Commonly consumed oils namely Refined Sunflower oil, Extra Virgin Olive oil, Refined Groundnut oil and Refined Palm oil were subjected to various tests; physical parameters involving pH, density, specific gravity and viscosity; and chemical parameters such as saponification value, iodine number, peroxide, acid, p-anisidine value and totex value were determined. The decreasing trend of iodine values and increasing trend of all the other parameters highlights the oxidative nature and introduction of free radicals in the samples.Abstract
How to Cite
Downloads
Similar Articles
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rajarajeswari M, Reena Ravi, Effectiveness of multicomponent intervention on smartphone addiction and leisure wellbeing among adolescents of selected PU college in Bangalore , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Gunjan Choudhary, Anupriya Roy Srivastava, Examining identity crisis in Samina Ali’s Madras on Rainy Days , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Muruganantham P, Harshavardhan J, Rajesh PK , Neelakrishnan S, Implementation of flexible and customizable free-from mirror heads-up display , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Akram M. Elias, Rayan S. Hamed, Jiyar M. Naji, The impact of bone substitute combined with blood cell progenerators on the healing of surgical bony defects , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

