Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.34Keywords:
Cooking oil, deep frying, free radicals, nutritional value, rancidityDimensions Badge
Issue
Section
Oils and fats hold paramount importance in our diet. Today, as the expense factor is significant, the population finds itself repeatedly using the same fried oil. Reusing cooking oils increases the risk to type-2 diabetes, acidity, and the presence of free radicals in the body which causes inflammation. The present study aims to showcase the numerical data of the deleterious effects caused by reusing oils, and thereby educate the population to halt this practise. Commonly consumed oils namely Refined Sunflower oil, Extra Virgin Olive oil, Refined Groundnut oil and Refined Palm oil were subjected to various tests; physical parameters involving pH, density, specific gravity and viscosity; and chemical parameters such as saponification value, iodine number, peroxide, acid, p-anisidine value and totex value were determined. The decreasing trend of iodine values and increasing trend of all the other parameters highlights the oxidative nature and introduction of free radicals in the samples.Abstract
How to Cite
Downloads
Similar Articles
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- P. Rajkumar, B. Vijay Bhaskar, Assessing the impact of indoor air pollution on respiratory health: A survey of home residents in rural area , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shivali Kundan, Neha Verma, Zahid Nabi, Dinesh Kumar, Satellite radiance assimilation using the 3D-var technique for the heavy rainfall over the Indian region , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Anju Bhatnagar, Assessment of antioxidant activity and phytochemical screening in leaf extract of Andrographis paniculate (Burm. f.) nees , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

