Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.34Keywords:
Cooking oil, deep frying, free radicals, nutritional value, rancidityDimensions Badge
Issue
Section
Oils and fats hold paramount importance in our diet. Today, as the expense factor is significant, the population finds itself repeatedly using the same fried oil. Reusing cooking oils increases the risk to type-2 diabetes, acidity, and the presence of free radicals in the body which causes inflammation. The present study aims to showcase the numerical data of the deleterious effects caused by reusing oils, and thereby educate the population to halt this practise. Commonly consumed oils namely Refined Sunflower oil, Extra Virgin Olive oil, Refined Groundnut oil and Refined Palm oil were subjected to various tests; physical parameters involving pH, density, specific gravity and viscosity; and chemical parameters such as saponification value, iodine number, peroxide, acid, p-anisidine value and totex value were determined. The decreasing trend of iodine values and increasing trend of all the other parameters highlights the oxidative nature and introduction of free radicals in the samples.Abstract
How to Cite
Downloads
Similar Articles
- Rajesh Kumar Singh, Genetic Variability in Aromatic Rice , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- NEERAJ K. SRIVASTAVA, A.K. SRIVASTAVA, WATER QUALITY ASSESSMENT OF GOMTI RIVER AROUND INDUSTRIAL AREA AT DISTT. SULTANPUR , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

