The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.24Keywords:
Noise; Cognitive Performance; Attention; Brain Activity; ElectroencephalogramDimensions Badge
Issue
Section
It seems qualitative measurements of subjective reactions are not appropriate indicators to assess the effect of noise on cognitive performance. In this study, quantitative and combined indicators were applied to study the effect of noise on cognitive performance. A total of 54 young subjects were included in this experimental study. The participants’ mental workload and attention were evaluated under different levels of noise exposure including, background noise, 75, 85 and 95 dBA noise levels. The study subject’s EEG signals were recorded for 10 minutes while they were performing the IVA test. The EEG signals were used to estimate the relative power of their brain frequency bands.Abstract
Results revealed that mental workload and visual/auditory attention is significantly reduced when the participants are exposed to noise at 95 dBA level (P < 0.05). Results also showed that with the rise in noise levels, the relative power of the Alpha band increases while the relative power of the Beta band decreases as compared to background noise. The most prominent change in the relative power of the Alpha and Beta bands occurs in the occipital and frontal regions of the brain respectively.
The application of new indicators, including brain signal analysis and power spectral density analysis, is strongly recommended in the assessment of cognitive performance during noise exposure. Further studies are suggested regarding the effects of other psychoacoustic parameters such as tonality, noise pitch (treble or bass) at extended exposure levels.
How to Cite
Downloads
Similar Articles
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. N. Malleswari, P. V. S. Gupta, S. V. M. Vardhan, D. Ramachandran, Quantitative estimation of ethanol content in eribulin mesylate injection using headspace gas chromatographic with flame ionization detector [HS-GC-FID] , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jumman Bakhasha, Kamlesh K. Yadav, Vaishnavi Saxena, Neeti Arya, Abha Trivedi, Environmentally relevant concentration of copper elated hematological impairment, branchiotoxicity, myotoxicity, nephrotoxicity and antioxidants imbalance in fish Channa punctatus , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sreenath M.V. Reddy, D. Annapurna, Anand Narasimhamurthy, Influence node analysis based on neighborhood influence vote rank method in social network , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 20 21 22 23 24 25 26 27 28 29 > >>
You may also start an advanced similarity search for this article.

