The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.24Keywords:
Noise; Cognitive Performance; Attention; Brain Activity; ElectroencephalogramDimensions Badge
Issue
Section
It seems qualitative measurements of subjective reactions are not appropriate indicators to assess the effect of noise on cognitive performance. In this study, quantitative and combined indicators were applied to study the effect of noise on cognitive performance. A total of 54 young subjects were included in this experimental study. The participants’ mental workload and attention were evaluated under different levels of noise exposure including, background noise, 75, 85 and 95 dBA noise levels. The study subject’s EEG signals were recorded for 10 minutes while they were performing the IVA test. The EEG signals were used to estimate the relative power of their brain frequency bands.Abstract
Results revealed that mental workload and visual/auditory attention is significantly reduced when the participants are exposed to noise at 95 dBA level (P < 0.05). Results also showed that with the rise in noise levels, the relative power of the Alpha band increases while the relative power of the Beta band decreases as compared to background noise. The most prominent change in the relative power of the Alpha and Beta bands occurs in the occipital and frontal regions of the brain respectively.
The application of new indicators, including brain signal analysis and power spectral density analysis, is strongly recommended in the assessment of cognitive performance during noise exposure. Further studies are suggested regarding the effects of other psychoacoustic parameters such as tonality, noise pitch (treble or bass) at extended exposure levels.
How to Cite
Downloads
Similar Articles
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Narmetova Y. Karimovna, Abdusamatov Khasanboy, Abdinazarova Iltifotkhon, Nurbaeva Khabiba, Mirzayeva Adiba, Psychoemotional characteristics in psychosomatic diseases , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Poonam Sharma, Anindita S.Chaudhuri, Subhash Anand, Ankur Srivastava, Ashutosh Mohanty , Pravin Kokne, Measuring the relationship of land use land cover, normalized difference vegetation index and land surface temperature in influencing the urban microclimate in northeast Delhi, India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.