The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.24Keywords:
Noise; Cognitive Performance; Attention; Brain Activity; ElectroencephalogramDimensions Badge
Issue
Section
It seems qualitative measurements of subjective reactions are not appropriate indicators to assess the effect of noise on cognitive performance. In this study, quantitative and combined indicators were applied to study the effect of noise on cognitive performance. A total of 54 young subjects were included in this experimental study. The participants’ mental workload and attention were evaluated under different levels of noise exposure including, background noise, 75, 85 and 95 dBA noise levels. The study subject’s EEG signals were recorded for 10 minutes while they were performing the IVA test. The EEG signals were used to estimate the relative power of their brain frequency bands.Abstract
Results revealed that mental workload and visual/auditory attention is significantly reduced when the participants are exposed to noise at 95 dBA level (P < 0.05). Results also showed that with the rise in noise levels, the relative power of the Alpha band increases while the relative power of the Beta band decreases as compared to background noise. The most prominent change in the relative power of the Alpha and Beta bands occurs in the occipital and frontal regions of the brain respectively.
The application of new indicators, including brain signal analysis and power spectral density analysis, is strongly recommended in the assessment of cognitive performance during noise exposure. Further studies are suggested regarding the effects of other psychoacoustic parameters such as tonality, noise pitch (treble or bass) at extended exposure levels.
How to Cite
Downloads
Similar Articles
- Vishal Panghal, Asha Singh, Dinesh Arora, Nidhi Ahlawat, Sunder S. Arya, Sunil Kumar, Horizontal flow biochar amended constructed wetlands as a sustainable approach for rural wastewater treatment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vishnu Prasad C, Ramaprabha D, An assessment of growth indicators and intricacies of Udyam entities in the post-pandemic era , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P.L. Parmar, P.M George, Effect of process parameters on concentricity in CNC turning operation using design of experiment , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Divya R., Vanathi P. T., Harikumar R., An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

