Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.10Keywords:
Transshipment problem, fractional transshipment problem, quadratic transshipment problem, bilevel programming, triangular fermatean fuzzy number, fermatean fuzzy programmingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Objectives: To investigate the effectiveness of AI based traffic control system on reducing the economic and environmental cost in the context of the transshipment problem.Abstract
Methods: The mathematical model of bilevel fractional/quadratic green transshipment problem by implementing AI traffic control system is formulated and numerical example is provided to emphasize the nature of this model. Due to inherent uncertainty, fermatean fuzzy parameters are incorporated in this model. Also, Supply and demand are considered as fermatean fuzzy multi choice. Existing fermatean fuzzy programming is used to find the solutions for proposed transshipment model.
Findings: Comparative study has been made for bilevel fractional/quadratic transshipment problem with and without implementation of AI traffic control system. Optimum Solutions obtained for the proposed model by using prescribed method reveals that the bilevel fractional/quadratic green transshipment problem gives the minimum transportation cost, deterioration cost, carbon emission cost than the transshipment problem with traditional traffic control system. Obtained solutions for bilevel fractional/quadratic green transshipment problem with implementation of AI traffic control system shows a reduction of 7.8% in transportation cost, 4% in cost of carbon emission than the traditional transshipment problem. Meanwhile, obtained solutions for bilevel fractional/quadratic green transshipment problem shows a reduction of 14% in cost and 14.4% in time than bilevel fractional/quadratic green transportation problem.
Novelty: The efficiency of bilevel fractional/quadratic green transshipment problem by implementing AI traffic control system with multi choice parameters under Fermatean fuzzy environment is not yet investigated in literature.
How to Cite
Downloads
Similar Articles
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S K Bairagi, Ram Chandra, R P Singh, Effect of Different Phosphorus and Potassium Levels on a Seed Crop of French Bean (Phaseolus vulgaris L.) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- L Brigith Gladys, J Merline Vinotha, Multi-objective Multi-route Soft Rough Sustainable Transportation Problem based on Various Road Maintenance Conditions , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Brigith Gladys L, J. Merline Vinotha, Sustainable rough multi-objective two-stage solid transportation problem of third-party e-commerce logistic providers with conditional fixed parameter on safety , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Janavarthini, Dr. I. Antonitte Vinoline, Green inventory model for growing items with constraints under demand uncertainty , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

