Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.10Keywords:
Transshipment problem, fractional transshipment problem, quadratic transshipment problem, bilevel programming, triangular fermatean fuzzy number, fermatean fuzzy programmingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Objectives: To investigate the effectiveness of AI based traffic control system on reducing the economic and environmental cost in the context of the transshipment problem.Abstract
Methods: The mathematical model of bilevel fractional/quadratic green transshipment problem by implementing AI traffic control system is formulated and numerical example is provided to emphasize the nature of this model. Due to inherent uncertainty, fermatean fuzzy parameters are incorporated in this model. Also, Supply and demand are considered as fermatean fuzzy multi choice. Existing fermatean fuzzy programming is used to find the solutions for proposed transshipment model.
Findings: Comparative study has been made for bilevel fractional/quadratic transshipment problem with and without implementation of AI traffic control system. Optimum Solutions obtained for the proposed model by using prescribed method reveals that the bilevel fractional/quadratic green transshipment problem gives the minimum transportation cost, deterioration cost, carbon emission cost than the transshipment problem with traditional traffic control system. Obtained solutions for bilevel fractional/quadratic green transshipment problem with implementation of AI traffic control system shows a reduction of 7.8% in transportation cost, 4% in cost of carbon emission than the traditional transshipment problem. Meanwhile, obtained solutions for bilevel fractional/quadratic green transshipment problem shows a reduction of 14% in cost and 14.4% in time than bilevel fractional/quadratic green transportation problem.
Novelty: The efficiency of bilevel fractional/quadratic green transshipment problem by implementing AI traffic control system with multi choice parameters under Fermatean fuzzy environment is not yet investigated in literature.
How to Cite
Downloads
Similar Articles
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Vijaya, D. Hema, Some properties of maximal product of two picture fuzzy soft graph , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kamble Rajratna M., Kulkarni Pramod R., Existence and uniqueness of solutions for exponential fractional differential equations , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

