Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.02Keywords:
Random Forest, Malware Detection, Machine Learning, Android Ecosystem, Deep LearningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Android malware is a growing cybersecurity concern as malicious applications exploit vulnerabilities in the Android operating system to steal sensitive data, disrupt device functionality, or gain unauthorised control. The rising sophistication of these threats makes conventional signature-based detection techniques insufficient, highlighting the need for advanced learning-based solutions that adapt to evolving attack patterns. This study proposes a comparative evaluation of Machine Learning (ML) as well as Deep Learning (DL) models for Android malware detection using the RT-IoT2022 dataset, which contains diverse benign and malicious network traffic. Five models were implemented: Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and a hybrid CNN-LSTM. Experimental analysis showed that while RF and SVM achieved strong baseline results and CNN effectively extracted spatial features, LSTM alone struggled to classify balanced classes. The proposed hybrid CNN–LSTM achieved the best results with 99.30% accuracy and 99.76% F1-score. These findings validate the superiority of hybrid architectures and provide a pathway for lightweight, real-time, and adversarial-resistant malware detection systems for Android and Internet of Things (IoT) environments.Abstract
How to Cite
Downloads
Similar Articles
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

