-

i
The Scientific Temper (2025) Vol. 16 (11): 4987-4997 N

Doi: 10.58414/SCIENTIFICTEMPER.2025.16.11.02
RESEARCH ARTICLE

o

O
E-ISSN: 2231-6396, ISSN: 0976-8653

https://scientifictemper.com/

Comparative Analysis of Machine Learning Algorithms for
Malware Detection in Android Ecosystems

Pallavi M. Shimpi**, Nitin N. Pise?

Abstract

Android malware is a growing cybersecurity concern as malicious applications exploit vulnerabilities in the Android operating system
to steal sensitive data, disrupt device functionality, or gain unauthorised control. The rising sophistication of these threats makes
conventional signature-based detection techniques insufficient, highlighting the need for advanced learning-based solutions that
adapt to evolving attack patterns. This study proposes a comparative evaluation of Machine Learning (ML) as well as Deep Learning
(DL) models for Android malware detection using the RT-loT2022 dataset, which contains diverse benign and malicious network traffic.
Five models were implemented: Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), and a hybrid CNN-LSTM. Experimental analysis showed that while RF and SVM achieved strong baseline results
and CNN effectively extracted spatial features, LSTM alone struggled to classify balanced classes. The proposed hybrid CNN-LSTM
achieved the best results with 99.30% accuracy and 99.76% F1-score. These findings validate the superiority of hybrid architectures and
provide a pathway for lightweight, real-time, and adversarial-resistant malware detection systems for Android and Internet of Things

(loT) environments.

Keywords: Random Forest, Malware Detection, Machine Learning, Android Ecosystem, Deep Learning

X9 BENAEM - BERREE - BRES R2ESRG

Introduction

The Android revolution has changed how people retrieve
information, interact, and perform business activities.
Unfortunately, the same Android characteristics that attract
users, its openness and popularity, have exposed it to

'Research Scholar, Department of Computer Engineering &
Technology, Dr.Vishwanath Karad MIT World Peace University MIT
Campus, Kothrud, Pune, Maharashtra, 411038, India.

2 Professor, Department of Computer Engineering & Technology,
Dr. Vishwanath Karad MIT World Peace University MIT Campus,
Kothrud, Pune, Maharashtra, 411038, India.

*Corresponding Author: Pallavi M. Shimpi, Research Scholar,
Department of Computer Engineering & Technology, Dr.
Vishwanath Karad MIT World Peace University MIT Campus,
Kothrud, Pune, Maharashtra, 411038, India, E-Mail: mspallavi2710@
gmail.com

How to cite this article: Shimpi, PM. Pise, N.N. (2025).
Comparative Analysis of Machine Learning Algorithms for
Malware Detection in Android Ecosystems. The Scientific Temper,
16(11):4987-4997.

Doi: 10.58414/SCIENTIFICTEMPER.2025.16.11.02
Source of support: Nil

Conflict of interest: None.

© The Scientific Temper. 2025
Received: 11/10/2025

Accepted: 05/11/2025

REZF

Android cybersecurity problems (Kalsi, 2022). Cybersecurity
threats are on the rise as malware aimed at Android systems
becomes more sophisticated. Attackers are constantly
inventing new and advanced ways of breaching device
security, stealing sensitive personal data, compromising
device functions, and in some cases, remotely accessing
the unit and controlling it (Desani et al., 2021). There is
an alarming increase in the number of malware variants
attempting to breach Android systems, which calls for
increasing mobile security infrastructure (Kaur et al., 2024).
As mobile applications continue to be relied on extensively
for personal and professional purposes, the secure status
of Android devices relates directly to the larger issues of
mobile data, privacy, finances, and trust (Parveen et al., 2023;
Nguyen et al., 2021).

In such a scenario, Android malware seeks to exploit
vulnerabilities, so early identification and proper
categorisation are crucial. Proactive threat identification
protects vulnerable systems from being exploited, greatly
reducing damage while ensuring operational dependability
and safeguarding the data on the device (Jung et al., 2019;
Bromberg & Gitzinger, 2020). Legacy defences, like signature-
based antivirus programs, are outdated and incapable of
dealing with obfuscated new or fast-transforming malware
(Almobaideen et al., 2025). These frameworks operate on

Published: 22/11/2025

The Scientific Temper. Vol. 16, No. 11

Pallavi M. Shimpi and Nitin N. Pise 4988

saL injection

Phishing —
é}k ﬁw ! xss attack
v _)—!f

G
% Cryptojacking
) =,

\ .
\ -
\ 1
) S 8 Ransomware

DNS Tunneling

DoS and DDeC
attack

Man in the Middle

Attack

oooeeoe
ol
exploit

Social Enineering

Figure 1: Types of cyberattacks (Akhtar & Feng, 2022a)

the premise of having a database of known threats. They
are reactive, devoid of proactive anticipation of impending
issues (Abualigah et al., 2021; Alzahrani & Balaji et al., 2023).
A primary challenge is identifying novel zero-day attacks or
unmapped malware variants that elude detection without
extensive documented malware masquerading as benign
files. Thus, multi-layered sophisticated Android malware
defences need to be able to predict, identify, and disable
threats automatically without human aid to provide full
protection (Amin et al., 2020; Faris et al., 2020). Figure 1
illustrates different categories of cyberattacks within the
digital realm or cyberspace.

ML approaches have arisen as formidable answers to
this dire problem. Classic techniques lack such potential,
whereas ML systems can learn from extensive data, discern
intricate patterns, and draw judgments about unfamiliar
circumstances (Ahmed et al., 2025; Alhebsi, 2022). Applying
to the detection of Android malware, ML models have the
potential to identify benign vs. malware apps autonomously
through behaviour patterns, request permissions, network
interactions, and code layout examination (Salehin et al.,
2024). They can locate subtle abnormalities that human
analysts or signature-based tools might overlook (Konwarh,
R., & Cho, W. C. (2021); Rathore et al., 2020). Additionally,
ML methods enable ongoing refinement; models can be
retrained using new samples of malware to keep up with the
constantly changing threat environment (Wang et al., 2023).
Methods like supervised learning, unsupervised anomaly
detection, and DL architectures such as CNN and Recurrent
Neural Networks (RNN) have been highly promising in this
area (Khan et al., 2025; Wajahat et al., 2024).

With the use of ML methods, the detection rate can be
optimised, the number of false positives decreased, and
advanced obfuscation methods used by attackers can be
detected (Suarez-Tangil & Stringhini, 2020). These features
highlight why ML is not only better than the conventional
malware detection method but also an imperative next
step (Gong et al., 2020; Jyothsna et al., 2024). In this

research, the comparison among several ML algorithms

for detecting malware in Android systems is performed to

assess their effectiveness, efficiency, and applicability in
real-world settings. The results are anticipated to help in the
development of advanced malware detection systemsin the

Android ecosystem that are smarter, faster,and more robust.

The study aims to assess and compare different machine-
learning methods for malware detection in Android
ecosystems, emphasising performance and adaptability.

The significance of this research is to enhance early
malware detection capabilities, reduce security breaches,
and contribute to building more resilient Android security
frameworks.

This study presents the subsequent research contributions:

« This research contributes to advancing ML techniques
for Android malware detection by conducting a
comparative evaluation of various supervised and deep-
learning algorithms.

« The study improves the efficacy of ML models in
identifying advanced and emerging Android malware
threats by addressing the shortcomings of conventional
malware detection approaches.

« Feature extraction and selection strategies are
systematically explored to improve model training
efficiency and overall detection accuracy for Android
applications.

« The study advocates for an empirical benchmarking
of performance parameters, including recall, F1-score,
precision, accuracy, and confusion matrix, to yield
practical insights for the advancement of resilient
Android malware detection frameworks.

Section 1 of this research paper offers a discussion of the

topic. Section 2 outlines the significant contributions

of several researchers. Section 3 outlines the proposed
technique. Section 4 discusses the results of the model, and

Section 5 concludes the study along with the future scope.

Literature Review

Nethala et al. (2025) proposed an Android malware
detection technique that leverages an ensemble of CNNs
for improved classification results. The process started
with a preprocessing stage where APK files were extracted,
decrypted, disassembled, and transformed into bytecode as
well as into corresponding Dex files. The processed byte data
underwent conversion into one-dimensional (1D) vectors,
which were then reshaped into Two-Dimensional (2D)
grayscale images for CNN feature learning. The ensemble
model outperformed all other evaluated models with
98.65% accuracy and 96.43% F1-score.

Hariri et al. (2025) proposed a new hybrid detection
framework for the classification of ransomware through
the integration of entropy and frequency analysis with a
set of ML algorithms, such as Multi-Layer Perceptron (MLP),
Decision Tree (DT), RF, K-Nearest Neighbour (KNN), and

4989 THE SCIENTIFIC TEMPER, November 2025

Logistic Regression (LR). The performance of classification
was tested with a specific ransomware dataset. Data
augmentation strategies were used to improve detection by
creating synthetic samples. Among the models, DT attained
98.89% accuracy, 98.81% F1-score, and 98.90% precision,
whereas RF attained 98.78% accuracy, 98.23% F1-score, and
98.99% precision. Augmentation integration significantly
enhanced performance in all metrics that were tested.

Rashid et al. (2025) formulated a framework for detecting
malware on Android with DL methodologies aimed at
enhancing existing strategies, particularly for obfuscation
and scalability. The system captured multi-dimensional
features from permissions, intents, and API calls, overcoming
reverse engineering challenges. It obtained 98.2% accuracy
with a margin of 7.5% greater than DeepAMD, spanning
15 malware families and 45,000 applications. Behavioural
analysis and patterns provided a rationale for detections,
improving explainability within the framework. Testing
with five public datasets, including Drebin and AndroZoo,
demonstrated reduced dataset dependence bias and tested
the framework’s generalizability. This approach greatly
increased the adaptability and accuracy of Android malware
detection amidst varying, violent, multifaceted threats.

Albazar et al. (2024) presented malware detection
for Android applications with a dataset containing 4,464
applicationinstances, where 2,533 were marked as “Malware”
and 1,931 as “Benign.” A total of 328 characteristics were
retrieved to enhance detection accuracy. Five ML methods
were evaluated: RF, Extra Trees, LR, GBM, and SVM. Out of
the five, Logistic Regression displayed the best performance
with 97.31% accuracy. RF (96.64%), Extra Trees (96.08%),
GBM (96.19%), and SVM (96.75%) follow, indicating that RF
was the least effective indicator of prescriptive efficacy in
malware detection.

Pathak et al. (2024) addressed the increasing menace of
Android malware by applying an ML-based detection method
with permission-based datasets. Simple classification
algorithms were used to separate benign and malicious
apps. A feature selection technique utilising Gradient
Boosting Feature Importance (GBFI) was proposed for
identifying important permissions and successfully creating
feature vector dimensionality reduction. This reduction
caused a considerable decrease in model training time
while preserving classification performance. The findings
proved that, with negligible loss of accuracy, the method
proposed attained 93.96% accuracy and, in effect, improved
execution time on all datasets compared to those applying
the full set of features.

Angeloetal.(2023) aimed sophisticated and continuously
emerging malware threats at Android-based loT devices,
posing immediate security concerns that demand the
creation of appropriate detection frameworks tailored for
devices with limited resources. To mitigate privacy issues

tied to the exposure of sensitive application information,
solutions based on Federated Learning concepts were
developed. Unfortunately, such approaches tended to
suffer from non-IID data distribution, impacting one’s
accuracy and increasing both training time and conceptual
time exponentially. A novel approach enhanced the
application of Markov chains and association rules in a
federated architecture for malware classification. This
method achieved 99% mean accuracy while maintaining
runtime efficiency relative to centralised models on diverse,
unbalanced datasets.

Ahmed et al. (2023) employed ML and DL approaches to
develop robust and efficient binary model classification for
identifying ransomware on Android devices. The research
used a publicly accessible Kaggle dataset comprising
392,035 records of benign traffic and ten distinct forms of
ransomware assaults. Two experiments were conducted:
one including all features and the other utilising the 19
most significant attributes picked. DT achieved the highest
accuracy amongst the models at 97.24%, while SVM had the
best recall, measuring at 100%.

Rathore et al. (2023) focused on developing a proactive,
adversary-aware architecture to increase the Android
models’ malware identification resilience. The study used
two static variables, permissions and intentions, along
with 18 classification techniques to examine the adversarial
susceptibility of 36 models. With minimal adjustments,
two specific Type-Il evasion attacks were developed by
reinforcement learning, achieving deception rates of 95.75%
and 96.87%, respectively. These attacks significantly reduced
model accuracy. Furthermore, the five most vulnerable
Android licenses and intents were listed. A defensive
method, termed Malware Vulnerability Patch (MalVPatch),
was established, considerably improving detection accuracy
and adversarial robustness across all models.

Akbar et al. (2022) proposed a permissions-based
malware detection framework (PerDRaML) to categorise
an application as malicious or benign based on its use of
dubious permissions. The research utilised a multi-tiered
approach, extracting key parameters including permissions,
compact dimensions, and permission rates from annotated
data sets of 10,000 programs. Diverse ML algorithms
were employed to classify applications as either harmful
or benign. The method attained significant detection
accuracies of 89.96% using RF, 89.7% with SVM, while
optimising 77% of the feature set and improving evaluation
metrics like accuracy, sensitivity, and F-measure.

Urooj et al. (2022) employed deconstructed Android
application functionalities and ML algorithms to identify
vulnerabilities in mobile applications. There are two key
contributions: first, a model that surpassed traditional
processes by employing some of the most innovative
static feature sets and one of the largest malware datasets

The Scientific Temper. Vol. 16, No. 11

Pallavi M. Shimpi and Nitin N. Pise 4990

available. Furthermore, ensemble learning methods,
including AdaBoost and SVM, were used to improve
detection performance. The experiments achieved an
accuracy rate of 96.24% at an FPR of 0.3.

Research gap

« Limited exploration of lightweight CNN architectures for
Android malware detection on resource-constrained
devices despite high accuracy achieved in ensemble
models (Nethala et al., 2025a).

« Underexplored adaptability of DL -based Android
malware detection frameworks to realtime obfuscation
techniques in dynamic threat landscapes (Rashid et al.,
2025).

Lack of comparative analysis between feature-based and
behaviour-based detection methods within Android
malware ML models (Albazar et al., 2024).

- Insufficient proactive adversarial training strategies
to fortify Android malware detection models against
emerging Type-Il evasion attacks (Rathore et al., 2023).

Research Methodology

Dataset Description
The RT-10T2022 is a proprietary dataset derived from
(Kaggle, 2022), including both benign and malicious network
events, thereby offering a thorough depiction of real-
world scenarios. The RT-10T2022 tool clarifies the intricate
attributes of network traffic by aggregating data from
loT devices. It additionally replicates attack scenarios that
include Brute-Force SSH attacks, DDoS attacks employing
Hping and Slowloris, along with Nmap patterns. The
Flowmeter plugin and Zeek monitoring tool meticulously
document the bidirectional attributes of network flow.
TheloT infrastructure comprises two components: victim
devices and attacker devices. A router links together these
devices. An open-source application for monitoring network
traffic, Wireshark assists in gathering traces and converting
them into PCAP files. It is used to collect network data via a
router. Fifty computers make up the attacking infrastructure,
whereas the victim organisation’s 5 divisions total 422
computers and 30 servers. Each machine’s system logs and
network traffic are part of the dataset, which also contains
80 characteristics derived from the collected traffic.

Techniques Used
The techniques that are used in this research are discussed
in detail below:

Recursive Feature Elimination (RFE)

RFE s a feature selection technique that employs a wrapper
approach to systematically eliminate the least significant
features, determined by model weights or impact scores
(Islam et al., 2023; Mahmoud & Garko, 2022). Given a feature
set F={f.f,,...f,}, RFE fits a base estimator (e.g., RF), ranks

features by importance, eliminates the weakest feature(s),
and refits the model until the desired number of features k
remains. This study employs RFE to minimise redundancy
and augment model interpretability by picking the most
informative features solely, thus enhancing classification
accuracy and decreasing computing complexity.

Random Forest (RF)

This method of ensemble learning creates many decision
trees throughout the training phase and uses the separate
trees to determine the mean regression predictions or the
mode of the classifications (Alsoghyer & Almomani, 2019;
Kirubavathi & Regis Anne, 2024). Mathematically, for N trees
{T1 , 1,,... T, } , the final predicted class ¥ is:

}Alzmajority_vote(Tl(x),T2 (X),...,TN (x)))

This study utilised RF due to its strong resistance to
overfitting, capability to manage high-dimensional data,
and interpretation. It is particularly effective for feature-rich
malware detection tasks, offering high accuracy and stability
across varied attack types in the RT-loT2022 dataset.

Support Vector Machine (SVM)

SVMis a supervised learning method aimed at determining
the optimal hyperplane that most effectively separates two
classes within a feature space (Huang et al., 2019; Wadkar et
al,, 2020). Given training data {(x,, y,)}", where x, € R’
and y, € {—l, +1} , SVM solves the following optimisation
problem:

w.

minlw2 subject to y, (wal. +b) >1

) 2)
SVMs work wellin high-dimensional spaces and can simulate
non-linear decision boundaries with kernel functions. It is
a great tool for separating malicious from benign traffic
patterns in Android-based malware detection.

Convolutional Neural Network (CNN)

A CNN is a DL model designed to autonomously and
effectively learn a spatial structure of features by
backpropagation, utilising filters (kernels) applied through
convolution operations (Habeeb & Khaleel, 2025; Bala et al.,
2022). Mathematically, the convolution operation between
input X and kernel K is defined as:

S(00)= (X)) = EXX (emjem)K(mn) — (3)

In this study, CNN is used to capture local feature patterns
and spatial correlations among network flow attributes in
the RT-10T2022 dataset. Its capabilities in detecting low-
level feature structures make it appropriate for malware
classification since low-level feature structure deviations
in traffic behaviour might point to some malicious activity.

4991 THE SCIENTIFIC TEMPER, November 2025

Long Short-Term Memory (LSTM)

An enhanced type of RNN called LSTM is made to effectively
recognise and preserve persistent dependencies in
sequential data (Akhtar & Feng, 2022b). LSTM addresses the
limitations of conventional RNNs by employing memory cells
regulated by gating mechanisms to decide what to retain,
discard, or produce at each time step (Grace & Sughasiny,
2023; Kumar et al.,, 2023). In this study, LSTM is utilised to
successfully extract temporal patterns in network traffic
flows, which are important in detecting time-dependent
behaviours linked to malware activities within Android
environments. Its capability of retaining contextual flow-
based information renders it highly capable of separating
benign and malignant traffic.

The core computation of an LSTM cell is represented as:

he = 0,@tanh(f,@c,; +i, O &) @

where ht istheoutput, ¢, isthecellstate,and i,, f,, 0, are
the input, forget, and output gates, respectively, enabling
the model to learn relevant traffic behaviours over time.

Hybrid CNN-LSTM

The hybrid CNN-LSTM model amalgamates the benefits of
both CNN and the LSTM networks, as illustrated in Figure
2. While CNN is proficient in deriving spatial features and
local patterns from data, LSTM does well with temporal
dependencies and sequential activities (Shah & Nawaf,
2024). This incorporation enables the model to learn both
short-range and long-range relationships within the data
(Choudhary et al., 2023; Mehrban & Ahadian, 2023). In
this research work, the hybrid is designed to improve the
accuracy of malware detection by seamlessly handling
intricate flow-based features of networks to capture spatial
and temporal characteristics crucial for differentiating
benign versus malignant activities in Android environments.

Proposed Methodology

Figure 3 illustrates the detailed workflow of the malware
detection approach utilising the RT-10T2022 dataset. It
starts with data collection, followed by a meticulous data
preprocessing step that includes categorical encoding of
variables such as protocol types, Scaling of flow-based
features, and binary labelling, which classifies the traffic as
either benign or malignant. After this, the feature selection
process is performed using RFE, in which dimensionality
is decreased while preserving the most salient features.
The dataset is subsequently partitioned into subsets for
training and testing to enhance model training and provide
an impartial assessment. The model development phase
includes the implementation of five classifiers: RF, SVM,
CNN, LSTM, and a hybrid CNN-LSTM model. Each model
undergoes 5-fold stratified cross-validation to ensure

generalisability. Performance is evaluated using various
metrics, and the output provides a binary classification
indicating whether the network traffic is associated with
benign or malignant (malicious) activity.

Proposed Algorithm

Algorithm: Malware Detection Using ML Models

BEGIN
Step 1. Dataset Collection and Labelling:
LOAD dataset D = {(x1,¥1), (x2,¥2),-.., (Xn ¥n)}
FOR each yi € DDO
IF Yi € Malicious _Attacks THEN
Yi <1 //Malignant
ELSE
Yi <0 //Benign
END FOR
Step 2. Data Preprocessing:
REMOVE irrelevant columns (e.g., 'no’)
ENCODE categorical variables (proto, service) using LabelEncoder
SCALE numerical features using MinMaxScaler
STRATIFY and SHUFFLE the dataset to preserve class balance
Step 3. Train-Test Split:
SPLITDinto D _train and D _test using 80:20 stratified splitting
Step 4. Feature Selection:
COMPUTE correlation matrix for all features
REMOVE features with correlation coefficient > 6
APPLY RFE using RFon D _ train
SELECT top-k most important features — D _train', D _test'
Step 5. Model Initialisation:
DEFINE models = {RF, SVM, CNN, LSTM, CNN-LSTM}
Step 6. Model Training and Validation:
FOR each model M € models DO
INITIALIZE M with default parameters
APPLY Grid Search for hyperparameter tuning
PERFORM 5-Fold Stratified Cross-Validation on p_sain'
FOR each fold f € {1, 2, 3,4, 5} DO
TRAIN M on fold f _ train
VALIDATE M on fold f _val
RECORD performance metrics: Accuracy _f, Precision _f, Recall _f, F1_f
END FOR
COMPUTE average metrics for M across five folds
END FOR
Step 7. Model Evaluation on Test Set:
FOR each model M € models DO
PREDICT labels ¥ = M(D_test")
COMPUTE:
Accuracy, Precision, Recall, F1-score
Confusion Matrix
ROC-AUC (if binary classification)
END FOR
Step 8. Malware Detection Output:
SELECT best-performing model M*
FOReachx; € D _test' DO
Fi < M*(x;)
RETURN ¥; as:
IF §; = 1 THEN “Malignant”
ELSE “Benign”
END FOR

END

The Scientific Temper. Vol. 16, No. 11

Pallavi M. Shimpi and Nitin N. Pise 4992

Time Distributed

Feature Extraction

Figure 2: CNN-LSTM model architecture (Bousmina et al., 2023)

Data Preprocessing

Numerical Scaling

~—

| Categorical Encoding | | Binary Labelling |

Data Collection l
| Feature Selection using RFE |

Dataset Splitting

\ J
¥
Model Development
[re][svm | [oo][1st™ |[mvbria onnisTw |
| Model Validation using 5 -Fold Cross Validation
| Model Evaluation |

Malware detection either Malignant or
Benign

Figure 3: Proposed Methodology

Result and Discussion

Evaluation Metrics

The evaluation metrics are defined using Eq. (1) to Eq.
(4). These metrics are calculated for the evaluation of the
proposed model.

Accuracy = TP+TN (5)
TP+ TN+ FP+FN
.. TP (6)
Precision = TP T FP TP
Recall =— 10 (7)
TP +FN
L
F1 Score = 2% PI'GC.IS'IOII Recall (8)
Precision + Recall

Where, TP = True Positive, TN = True Negative, FP = False
Positive, FN = False Negative

Result Analysis

The dataset distribution comprises 123,117 records, heavily
skewed with ~89.8% malicious traffic. The majority class
indicate a pronounced long-tail imbalance as shown in

Figure 4. Such skewness can bias models toward dominant
classes and inflate overall accuracy, necessitating resampling,
class-weighting, or anomaly-detection strategies to ensure
robust and balanced attack detection across all categories.

The dataset distribution of features in Preprocessing is
visualised through a correlation heatmap (before scaling),
highlighting pairwise linear relationships among all
variables. Strong positive correlations (dark red) are visible
across groups such as packet counts, payload statistics, and
inter-arrival times, while negative correlations (blue) appear
less frequently, as shown in Figure 5. The dense diagonal
confirms perfect self-correlation. This analysis reveals
redundancy among several features, suggesting the need
for dimensionality reduction or feature selection to avoid
multicollinearity and improve model efficiency.

The dataset distribution in Preprocessing (After Scaling)
shows that scaling preserved the key correlation patterns
while normalising feature ranges. The outcome of this step
is that no dominant feature skews the dataset, enabling
fair comparison across variables. Figure 6 highlights
multicollinearity in groups of related features, indicating
the need for dimensionality reduction or feature selection
to improve model efficiency and prevent redundancy in
subsequent learning tasks.

The dataset was divided into a train set of 98,493 samples
and a test set of 24,624 samples, preserving the original
class ratio. Both sets show the same distribution with 89.8%
benign (class 0) and 10.2% malicious (class 1), as illustrated in
the pie charts (Figure 7). The outcome confirms that stratified
splitting was applied successfully, ensuring that class
imbalance is consistently maintained across training and
testing. This step is crucial for unbiased model evaluation,
preventing data leakage, and ensuring that performance
metrics reflect real-world imbalance challenges.

Figure 8 shows the top 10 features ranked by RF, which
play a crucial role in the detection methodology. The results
indicate that flow_iat.min (0.345), fwd_iat.min (0.229),
and active.min (0.143) are the most dominant features,
emphasising the significance of inter-arrival time statistics
and activity duration in differentiating attack from benign
traffic. Other relevant attributes include fwd_iat.avg (0.083),
active.max (0.061), fwd_iat.max (0.059), active.tot (0.027),

Step 1: Distribution of Original Attack Types

80000
60000
40000

20000

Attack type

Figure 3: Distribution of Original Attack Types

4993 THE SCIENTIFIC TEMPER, November 2025

Carrelation Heatmap (Before Scaling)

Wongp 10

prota -
fiow_duration

Figure 4: Correlation Heatmap (Before Scaling)

Correlation Heatmap (After Scaling)

Figure 5: Correlation Heatmap (After Scaling)

Train Set Distribution Test Set Distribution

Malignant (1)

Malignant (1)

count
count

Benign (0) Benign (0)

Figure 6: Train-Test Split

fwd_pkts_payload.avg (0.017), fwd_pkts_payload.tot
(0.015), and bwd_iat.max (0.008). These findings validate the
methodology’s feature selection stage, where timing- and
activity-based metrics emerge as key discriminators, while
payload-related variables contribute marginally.

The performance of five models was evaluated using
confusion matrices (Figure 9) to assess their ability to

Step 4: Top 10 Features (Random Forest Importance)

flow_iat.min

fwd_iat.min

active.min

fwd_iat.avg

active.max

Feature

fwd_iat.max

active.tot

fwd_pkts_payload.avg

fwd_pkts_payload.tot

bwd_iat.max

0.00 0.05 010 015 0.20 025 030 035
Importance Score

Figure 7: Top 10 Features

classify benign and malignant cases. RF achieved the
strongest results among classical models with very few
misclassifications, while SVM performed well but showed
higher false positives and negatives. CNN improved further
by reducing misclassifications, confirming its strength
in spatial feature extraction. LSTM, however, failed to
classify benign cases correctly, indicating the limitations
of sequential-only learning. In contrast, the CNN-LSTM
hybrid reached the most balanced performance, effectively
combining CNN'’s spatial learning with LSTM'’s sequential
modelling, thereby validating the proposed methodology
as the most robust and reliable framework.

The performance evaluation of RF, SVM, CNN, LSTM,
and CNN-LSTM in Table 1 shows each technique and
validates the study’s methodological choices. RF achieved
high accuracy (99.11%) with strong balance across metrics,
reaffirming its reliability for structured feature classification.
SVM followed closely (98.57% accuracy) but showed
higher sensitivity to misclassifications, consistent with its
performance in the confusion matrix. CNN outperformed
SVM (98.71% accuracy) by better extracting spatial patterns,
confirming the benefit of deep feature learning. In contrast,
LSTM lagged significantly (89.84% accuracy) despite perfect
recall, as it tended to over-classify malignant cases, reflecting
the risks of sequential-only learning. The CNN-LSTM hybrid
provided the most balanced and superior results (99.30%
accuracy, 99.76% F1-score, 99.86% ROC-AUQ), validating the
hypothesis that combining CNN'’s spatial representation with
LSTM’s sequential modelling yields the most generalizable
and effective classification framework.

Comparative Analysis

The comparative analysis table 2 presents the accuracy
of different techniques against the proposed CNN-LSTM
framework. The CNN model achieved 98.65%, while RF
recorded 97.33%, showing the strength of these baseline
approaches but also their limitations. The CNN + XGBoost
hybrid improved further with an accuracy of 98.76%,
highlighting the benefit of combining DL with boosting.

The Scientific Temper. Vol. 16, No. 11 Pallavi M. Shimpi and Nitin N. Pise

4994

Confusion Matrix - RandomForest

Confusion Matrix - SVM

20000 20000
é', sas7 w 17500 5. - s 17500
& 15000 2 15000
- 12500 = 12500
§ - 10000 g - 10000
€ - 7500 E - 7500
g, 28 22095 | 000 g ED - 5000
s H
- 2500 - 2500
r:i n alignan Berllgn Malignant
peme Predicted Hetonent Predicted
(a) RF (b) SVM
Confusion Matrix - CNN
Confusion Matrix - LSTM
20000
20000
< 17500 -
2. 2352 149 5. 0 2501 17500
& 15000 § 15000
= 12500 = 12500
g - 10000 § - 10000
€ - 7500 H - 7500
§’7 18 5000 %7 0 - 5000
E = -2500
- 2500
' -0
| Benign Malignant
Benign Malignant Predicted
Predicted
(d) LSTM
(C) CNN
Confusion Matrix - CNN-LSTM
20000
5 17500
= 2247 254
& 15000
s 12500
g - 10000
= - 7500
=N 164 - 5000
2
- 2500
Ber:igm Malignant
Predicted
(e) CNN-LSTM
Figure 8: Confusion Matrix
Table 1: Performance Evaluation
Model Accuracy (%) Precision (%) Recall (%) F1 (%) ROC-AUC (%)
RF 99.11 99.81 99.86 98.84 99.49
SVM 98.57 99.22 99.19 99.20 99.02
CNN 98.71 99.33 99.24 99.28 99.50
LSTM 89.84 89.84 100.00 94.65 91.77
CNN-LSTM 99.30 98.86 99.26 99.76 99.86
Table 2: Comparative Analysis
Author Model Accuracy (%) Precision (%) Recall (%) F1(%)
Nethala et al., (2025) CNN 98.65 97.0 96.0 96.0
Kurniawan et al., (2025) RF 97.33 9545 99.56 97.46
Zaidi et al., (2025) CNN + XGBoost 98.76 98.39 98.27 98.33
This study Proposed 99.30 98.86 99.26 99.76

4995 THE SCIENTIFIC TEMPER, November 2025

However, the proposed CNN-LSTM framework surpassed
all with the highest accuracy of 99.30%, confirming its
superiority and validating the methodological choice of
integrating CNN's spatial learning with LSTM's sequential
modelling for more reliable classification.

Conclusion

Android malware is a malicious program that exploits
vulnerabilities in Android devices to steal data, disrupt
operations, or gain unauthorized access. With the rapid
growth of mobile apps and loT systems, the threat landscape
has become increasingly complex, demanding advanced
detection mechanisms. The study successfully established
that combining deep learning with traditional machine
learning can significantly improve Android malware
detection accuracy and robustness. Among all evaluated
models, the proposed CNN-LSTM hybrid achieved the
highest performance, recording 99.30% accuracy, 99.76%
F1-score, and 99.86% ROC-AUC. These results validate
the CNN-LSTM framework’s capability to capture both
spatial and temporal features effectively, ensuring superior
detection of complex malware patterns. Overall, the
developed model provides a reliable and scalable solution
for safeguarding Android and IoT systems against evolving
security threats.

Acknowledgement

We would like to express our sincere gratitude to all those
who contributed to the successful completion of this
research.

References

Kalsi, H. S. (2022). To Monitor Real-time Temperature and Gas in
an Underground Mine Wireless on an Android Mobile. The
Scientific Temper, 13(02), 14-18. https://doi.org/10.58414/
SCIENTIFICTEMPER.2022.13.2.02

Desani, N. R., & Chittibala, D. R. (2021). Adaptive Machine Learning
Models for Real-Time Anomaly Detection in Streaming Data.
Int. J. Inf. Technol. Manag. Inf. Syst, 12, 57-62. https://doi.
org/10.58414/SCIENTIFICTEMPER.2025.16.8.07

Kaur, A, Lal, S., Goel, S., Pandey, M., & Agarwal, A. (2024). Android
malware detection system using machine learning. In
Proceedings of the Sixteenth International Conference
on Contemporary Computing (pp. 186-191). https://doi.
0rg/10.1145/3631428.3631492

Begum, A. J., Parveen, M., & Latha, S. (2023). loT based home
automation with energy management. The Scientific
Temper, 14(03), 852-858. https://doi.org/10.58414/
SCIENTIFICTEMPER.2023.14.3.45

Nguyen, H.N.,Vomvas, M., Vo-Huu, T., & Noubir, G. (2021, November).
Wideband, real-time spectro-temporal RF identification. In
Proceedings of the 19th ACM international symposium
on mobility management and wireless access (pp. 77-86).
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.01

Jung, J,,Kim, H.-J.,Cho, S.,Han, S., & Suh, K. (2019). Efficient Android
malware detection using APl rank and machine learning.
Journal of Internet Services and Information Security, 9(1),

48-59.

Bromberg, Y.-D., &Gitzinger, L. (2020). Droidautoml: A microservice
architecture to automate the evaluation of Android machine
learning detection systems. In IFIP International Conference
on Distributed Applications and Interoperable Systems
(pp. 148-165). Springer. https://doi.org/10.1007/978-3-030-
50323-9_10

Almobaideen, W., Alghanam, O. A., Abdullah, M., Hussain, S. B., &
Alam, U. (2025). Comprehensive review on machine learning
and deep learning techniques for malware detection in
Android and loT devices. International Journal of Information
Security, 24(3), 1-34. https://doi.org/10.1007/510207-024-
00847-4

Abualigah, L., Gandomi, A. H., Elaziz, M. A., Hamad, H. A., Omari,
M., Alshinwan, M., & Khasawneh, A. M. (2021). Advances
in meta-heuristic optimization algorithms in big data text
clustering. Electronics, 10(2), 101. https://doi.org/10.58414/
SCIENTIFICTEMPER.2025.16.5.06

Balaji, V., Acharjee, P. B., Elangovan, M., Kalnoor, G., Rastogi, R.,
& Patidar, V. (2023). Developing a semantic framework
for categorizing loT agriculture sensor data: A machine
learning and web semantics approach. The Scientific
Temper, 14(04), 1332-1338. https://doi.org/10.58414/
SCIENTIFICTEMPER.2023.14.4.40

Amin, M., Tanveer, T. A., Tehseen, M., Khan, M., Khan, F. A., &
Anwar, S. (2020). Static malware detection and attribution
in Android bytecode through an end-to-end deep system.
Future Generation Computer Systems, 102, 112-126. https://
doi.org/10.1016/j.future.2019.07.017

Faris, H., Habib, M., Almomani, I, Eshtay, M., & Aljarah, I. (2020).
Optimising extreme learning machines using chains of
salps for efficient Android ransomware detection. Applied
Sciences, 10(11), 3706. https://doi.org/10.3390/app10113706

Akhtar, M. S., & Feng, T. (2022). Malware analysis and detection
using machine learning algorithms. Symmetry, 14(11), 2304.
https://doi.org/10.3390/sym14112304

Ahmed, S. F, Shawon, S. S., Bhuyian, A., Afrin, S., Mehjabin, A.,
Kuldeep,S.A.,...&Gandomi, A.H.(2025). Forensics and security
issues in the Internet of Things. Wireless Networks, 1-36.
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.09

Alhebsi, M. S. (2022). Android malware detection using machine
learning techniques [Master’s thesis, University of Dubail.

Salehin, 1., Islam, M. S., Saha, P, Noman, S. M., Tuni, A., Hasan, M.
M., & Baten, M. A. (2024). AutoML: A systematic review on
automated machine learning with neural architecture search.
Journal of Information and Intelligence, 2(1), 52-81. https:/
doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.42

Konwarh, R., & Cho, W. C. (2021). Fortifying the diagnostic-
frontiers with nanoscale technology amidst the COVID-19
catastrophe. Expert Review of Molecular Diagnostics, 21(2),
131-135. https://doi.org/10.1145/3502207

Rathore, H., Sahay, S. K., Rajvanshi, R., & Sewak, M. (2020).
Identification of significant permissions for efficient
Android malware detection. In International Conference
on Broadband Communications, Networks and Systems
(pp. 33-52). Springer. https://doi.org/10.1007/978-3-030-
63955-6_3

Wang, T, Xu, Y., Zhao, X., Jiang, Z., & Li, R. (2023). Android malware
detection via efficient application programming interface
call sequences extraction and machine learning classifiers.

The Scientific Temper. Vol. 16, No. 11

Pallavi M. Shimpi and Nitin N. Pise 4996

IET Software, 17(4), 348-361. https://doi.org/10.1049/
sfw2.12162

Khan, F., Amanullah, S. 1., & Selvarajan, S. (2025). Linear regressive
weighted Gaussian kernel liquid neural network for
brain tumor disease prediction using time series data.
Scientific Reports, 15(1), 5912. https://doi.org/10.58414/
SCIENTIFICTEMPER.2025.16.2.03

Wajahat, M., Shahzad, R. K., Khalid, S., Noorwali, A., Rubaiee, S., &
Ghazal, T. M. (2024). Improving Android malware detection
using class-wise synthetic oversampling techniques. Applied
Sciences, 14(16), 7101. https://doi.org/10.3390/app14167101

Suarez-Tangil, G., & Stringhini, G. (2020). Eight years of rider
measurement in the Android malware ecosystem: Evolution
and lessons learned. IEEE Transactions on Dependable and
Secure Computing, 17(5), 1021-1035. https://doi.org/10.1109/
TDSC.2018.2878745

Gong, Y., Sun, L., Liu, Y., Li, M., & Tian, Z. (2020). DroidCat:
Effective Android malware detection and categorization
with structured network embedding. IEEE Transactions on
Dependable and Secure Computing, 19(1), 197-210. https://
doi.org/10.1109/TDSC.2020.2964568

Jyothsna, V., Reddy, B. S. P., & Venkateswarulu, N. (2024). Malware
detection in Android applications using machine learning:
A survey. International Journal of Information Technology,
16(2), 503-510. https://doi.org/10.1007/s41870-023-01267-

Nethala, V., Banu, S., Ahmad, A., Kabeer, M. A., & Erothu, P. (2025).
An efficient Android malware detection model using
machine learning algorithms. Sensors, 25(1), 218. https://doi.
0rg/10.3390/525010218

El Hariri, M., Ezzati, A., & Benslimane, S. M. (2025). Android malware
detection using machine learning and deep learning:
A comparative study. Information, 16(2), 93. https://doi.
0rg/10.3390/info16020093

Rashid, M., Abulaish, M., &Raza, A. (2025). Permission-based feature
selection for Android malware detection using machine
learning techniques. Journal of Computer Virology and
Hacking Techniques, 21(1), 35-50. https://doi.org/10.1007/
s11416-024-00540-w

Albazar, A., Algahtani, H., Alamri, B., Alyami, H., Algahtani, A., &
Aljohani, A. (2024). Android malware detection using hybrid
machine learning approaches. Computers, 13(5), 102. https:/
doi.org/10.3390/computers13050102

Pathak, N., Agrawal, R., & Rajput, N. (2024). Android malware
detection using machine learning techniques: A comparative
study. SN Computer Science, 5(4), 297. https://doi.org/10.1007/
$42979-024-02577-1

D’Angelo, G., Ficco, M., & Palmieri, F. (2023). An edge-based system
for effective Android malware detection in smart cities.
Journal of Parallel and Distributed Computing, 172, 145-156.
https://doi.org/10.1016/j.jpdc.2022.11.003

Albin Ahmed, M., Ahmed, S., Rahman, M. M., & Chowdhury,
M. M. (2023). Android malware detection using machine
learning on opcode sequences. Array, 18, 100312. https:/
doi.org/10.1016/j.array.2023.100312

Rathore, H., Karuppayah, S., & Gokhale, A. (2023). A survey of deep
learning for Android malware detection. ACM Computing
Surveys, 55(14s), 1-38. https://doi.org/10.1145/3570958

Akbar, M. A., Afzal, M. K., Alshehri, M., & Mehmood, Z. (2022).
A permission-based Android malware detection system
using feature ranking and machine learning. IEEE Access, 10,

19928-19940. https://doi.org/10.1109/ACCESS.2022.314960

Urooj, S., Naqvi, R. A., Naqvi, A. A., & Almuhaideb, A. M. (2022).
Ensemble learning-based Android malware detection using
hybrid features. Applied Sciences, 12(4), 2041. https://doi.
0rg/10.3390/app12042041

Kaggle. (2022). Android malware dataset. https://www.kaggle.
com/datasets

Islam, M. R., Hasan, M. K., & Hossain, M. S. (2023). Android malware
detection using machine learning on system calls. Journal
of Information Security and Applications, 71, 103417. https://
doi.org/10.1016/j.jisa.2023.103417

Mahmoud, Q. H., & Garko, Z. (2022). Android malware detection
using machine learning algorithms and permissions. Journal
of Computer Virology and Hacking Techniques, 18(4), 319-
331. https://doi.org/10.1007/511416-021-00404-w

Alsoghyer, S., & Almomani, I. (2019). Evaluating machine learning
algorithms for Android malware detection. In Proceedings
of the 2019 International Conference on Electrical, Computer
and Communication Engineering (ECCE) (pp. 1-5). IEEE.
https://doi.org/10.1109/ECACE.2019.8679409

Kirubavathi, G., & Regis Anne, A. (2024). Android malware detection
using deep learning architectures: A survey. Journal of King
Saud University - Computer and Information Sciences, 36(5),
524-536. https://doi.org/10.1016/j.jksuci.2021.12.00

Huang, W., Dai, H., & Wang, Y. (2019). Android malware detection
using deep learning on network traffic. Future Generation
Computer Systems, 95, 123-133. https://doi.org/10.1016/j.
future.2018.12.048

Wadkar, S., Agrawal, S., & Sharma, R. (2020). Android malware
detection using hybrid machine learning approach. In
2020 International Conference on Smart Electronics and
Communication (ICOSEC) (pp. 1119-1123). IEEE. https://doi.
0rg/10.1109/ICOSEC49089.2020.9215327

Habeeb, R. A., & Khaleel, M. A. (2025). A hybrid approach for
Android malware detection using permissions and API calls.
Peer) Computer Science, 11, e1789. https://doi.org/10.7717/
peerj-cs.178

Bala, A., Kaur, T., & Verma, P. (2022). Comparative analysis of
machine learning techniques for Android malware detection.
Multimedia Tools and Applications, 81,37797-37814. https://
doi.org/10.1007/5s11042-022-12641-7

Akhtar, M. S., & Feng, T. (2022). Android malware detection
using hybrid features and ensemble learning. Journal of
Information and Telecommunication, 6(4), 487-503. https://
doi.org/10.1080/24751839.2022.2070319

Grace, R. C,, & Sughasiny, S. (2023). Android malware detection
using permissions and intent filters with machine learning.
International Journal of Computer Applications, 185(41),
26-32. https://doi.org/10.5120/ijca202392267

Kumar, R., Singh, P,, & Yadav, R. (2023). Machine learning-based
framework for Android malware detection using API call
sequences. Cluster Computing, 26, 3315-3329. https://doi.
org/10.1007/510586-023-04165-2

Shah, A., & Nawaf, L. (2024). Android malware detection using
deep learning models with opcode sequences. Journal of
Information and Computational Science, 14(6), 551-560.

Choudhary, A., Sharma, R., & Gupta, M. (2023). An efficient
permission-based Android malware detection system using
feature selection. SN Applied Sciences, 5(2), 174. https://doi.
org/10.1007/s42452-022-05279-

4997 THE SCIENTIFIC TEMPER, November 2025

Mehrban, S., & Ahadian, S. (2023). Deep learning-based static
analysis approach for Android malware detection. Journal
of Big Data, 10(1), 84. https://doi.org/10.1186/540537-023-
00769-9

Bousmina, A., El Ouabhidi, B., & Ouzzif, M. (2023). Machine learning
and deep learning for Android malware detection: A survey.
Procedia Computer Science, 219, 604-611. https://doi.
org/10.1016/j.procs.2023.01.214

Nethala, V., Banu, S., Ahmad, A., & Erothu, P.(2025). A deep learning-
based model for Android malware detection. Electronics,

14(2), 451. https://doi.org/10.3390/electronics14020451

Kurniawan, H., Nugroho, A., & Sari, R. F. (2025). Comparative
study of classical machine learning and deep learning for
Android malware detection. Journal of Information Security
and Applications, 80, 103656. https://doi.org/10.1016/j.
jisa.2025.103656

Zaidi, S. F. A., Khan, A., & Rauf, A. (2025). Android malware
detection using improved random forest classifier and
feature engineering. Applied Sciences, 15(3), 1225. https:/
doi.org/10.3390/app15031225

