
Abstract
Android malware is a growing cybersecurity concern as malicious applications exploit vulnerabilities in the Android operating system 
to steal sensitive data, disrupt device functionality, or gain unauthorised control. The rising sophistication of these threats makes 
conventional signature-based detection techniques insufficient, highlighting the need for advanced learning-based solutions that 
adapt to evolving attack patterns. This study proposes a comparative evaluation of Machine Learning (ML) as well as Deep Learning 
(DL) models for Android malware detection using the RT-IoT2022 dataset, which contains diverse benign and malicious network traffic. 
Five models were implemented: Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), and a hybrid CNN-LSTM. Experimental analysis showed that while RF and SVM achieved strong baseline results 
and CNN effectively extracted spatial features, LSTM alone struggled to classify balanced classes. The proposed hybrid CNN–LSTM 
achieved the best results with 99.30% accuracy and 99.76% F1-score. These findings validate the superiority of hybrid architectures and 
provide a pathway for lightweight, real-time, and adversarial-resistant malware detection systems for Android and Internet of Things 
(IoT) environments.
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Introduction
The Android revolution has changed how people retrieve 
information, interact, and perform business activities. 
Unfortunately, the same Android characteristics that attract 
users, its openness and popularity, have exposed it to 
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Android cybersecurity problems (Kalsi , 2022). Cybersecurity 
threats are on the rise as malware aimed at Android systems 
becomes more sophisticated. Attackers are constantly 
inventing new and advanced ways of breaching device 
security, stealing sensitive personal data, compromising 
device functions, and in some cases, remotely accessing 
the unit and controlling it (Desani et al., 2021). There is 
an alarming increase in the number of malware variants 
attempting to breach Android systems, which calls for 
increasing mobile security infrastructure (Kaur et al., 2024). 
As mobile applications continue to be relied on extensively 
for personal and professional purposes, the secure status 
of Android devices relates directly to the larger issues of 
mobile data, privacy, finances, and trust (Parveen et al., 2023; 
Nguyen et al., 2021).

In such a scenario, Android malware seeks to exploit 
vulnerabilities, so early identif ication and proper 
categorisation are crucial. Proactive threat identification 
protects vulnerable systems from being exploited, greatly 
reducing damage while ensuring operational dependability 
and safeguarding the data on the device (Jung et al., 2019; 
Bromberg & Gitzinger, 2020). Legacy defences, like signature-
based antivirus programs, are outdated and incapable of 
dealing with obfuscated new or fast-transforming malware 
(Almobaideen et al., 2025). These frameworks operate on 
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Figure 1: Types of cyberattacks (Akhtar & Feng, 2022a)

the premise of having a database of known threats. They 
are reactive, devoid of proactive anticipation of impending 
issues (Abualigah et al., 2021; Alzahrani & Balaji et al., 2023). 
A primary challenge is identifying novel zero-day attacks or 
unmapped malware variants that elude detection without 
extensive documented malware masquerading as benign 
files. Thus, multi-layered sophisticated Android malware 
defences need to be able to predict, identify, and disable 
threats automatically without human aid to provide full 
protection (Amin et al., 2020; Faris et al., 2020). Figure 1 
illustrates different categories of cyberattacks within the 
digital realm or cyberspace.

ML approaches have arisen as formidable answers to 
this dire problem. Classic techniques lack such potential, 
whereas ML systems can learn from extensive data, discern 
intricate patterns, and draw judgments about unfamiliar 
circumstances (Ahmed et al., 2025; Alhebsi, 2022). Applying 
to the detection of Android malware, ML models have the 
potential to identify benign vs. malware apps autonomously 
through behaviour patterns, request permissions, network 
interactions, and code layout examination (Salehin et al., 
2024). They can locate subtle abnormalities that human 
analysts or signature-based tools might overlook (Konwarh, 
R., & Cho, W. C. (2021); Rathore et al., 2020). Additionally, 
ML methods enable ongoing refinement; models can be 
retrained using new samples of malware to keep up with the 
constantly changing threat environment (Wang et al., 2023). 
Methods like supervised learning, unsupervised anomaly 
detection, and DL architectures such as CNN and Recurrent 
Neural Networks (RNN) have been highly promising in this 
area (Khan et al., 2025; Wajahat et al., 2024).

With the use of ML methods, the detection rate can be 
optimised, the number of false positives decreased, and 
advanced obfuscation methods used by attackers can be 
detected (Suarez-Tangil & Stringhini, 2020). These features 
highlight why ML is not only better than the conventional 
malware detection method but also an imperative next 
step (Gong et al., 2020; Jyothsna et al., 2024). In this 

research, the comparison among several ML algorithms 
for detecting malware in Android systems is performed to 
assess their effectiveness, efficiency, and applicability in 
real-world settings. The results are anticipated to help in the 
development of advanced malware detection systems in the 
Android ecosystem that are smarter, faster, and more robust.

The study aims to assess and compare different machine-
learning methods for malware detection in Android 
ecosystems, emphasising performance and adaptability. 

The significance of this research is to enhance early 
malware detection capabilities, reduce security breaches, 
and contribute to building more resilient Android security 
frameworks.
This study presents the subsequent research contributions:
•	 This research contributes to advancing ML techniques 

for Android malware detection by conducting a 
comparative evaluation of various supervised and deep-
learning algorithms.

•	 The study improves the efficacy of ML models in 
identifying advanced and emerging Android malware 
threats by addressing the shortcomings of conventional 
malware detection approaches.

•	 Feature extraction and selection strategies are 
systematically explored to improve model training 
efficiency and overall detection accuracy for Android 
applications.

•	 The study advocates for an empirical benchmarking 
of performance parameters, including recall, F1-score, 
precision, accuracy, and confusion matrix, to yield 
practical insights for the advancement of resilient 
Android malware detection frameworks.

Section 1 of this research paper offers a discussion of the 
topic. Section 2 outlines the significant contributions 
of several researchers. Section 3 outlines the proposed 
technique. Section 4 discusses the results of the model, and 
Section 5 concludes the study along with the future scope.

Literature Review
Nethala et al. (2025) proposed an Android malware 
detection technique that leverages an ensemble of CNNs 
for improved classification results. The process started 
with a preprocessing stage where APK files were extracted, 
decrypted, disassembled, and transformed into bytecode as 
well as into corresponding Dex files. The processed byte data 
underwent conversion into one-dimensional (1D) vectors, 
which were then reshaped into Two-Dimensional (2D) 
grayscale images for CNN feature learning. The ensemble 
model outperformed all other evaluated models with 
98.65% accuracy and 96.43% F1-score.

Hariri et al. (2025) proposed a new hybrid detection 
framework for the classification of ransomware through 
the integration of entropy and frequency analysis with a 
set of ML algorithms, such as Multi-Layer Perceptron (MLP), 
Decision Tree (DT), RF, K-Nearest Neighbour (KNN), and 
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Logistic Regression (LR). The performance of classification 
was tested with a specific ransomware dataset. Data 
augmentation strategies were used to improve detection by 
creating synthetic samples. Among the models, DT attained 
98.89% accuracy, 98.81% F1-score, and 98.90% precision, 
whereas RF attained 98.78% accuracy, 98.23% F1-score, and 
98.99% precision. Augmentation integration significantly 
enhanced performance in all metrics that were tested.

Rashid et al. (2025) formulated a framework for detecting 
malware on Android with DL methodologies aimed at 
enhancing existing strategies, particularly for obfuscation 
and scalability. The system captured multi-dimensional 
features from permissions, intents, and API calls, overcoming 
reverse engineering challenges. It obtained 98.2% accuracy 
with a margin of 7.5% greater than DeepAMD, spanning 
15 malware families and 45,000 applications. Behavioural 
analysis and patterns provided a rationale for detections, 
improving explainability within the framework. Testing 
with five public datasets, including Drebin and AndroZoo, 
demonstrated reduced dataset dependence bias and tested 
the framework’s generalizability. This approach greatly 
increased the adaptability and accuracy of Android malware 
detection amidst varying, violent, multifaceted threats.

Albazar et al. (2024) presented malware detection 
for Android applications with a dataset containing 4,464 
application instances, where 2,533 were marked as “Malware” 
and 1,931 as “Benign.” A total of 328 characteristics were 
retrieved to enhance detection accuracy. Five ML methods 
were evaluated: RF, Extra Trees, LR, GBM, and SVM. Out of 
the five, Logistic Regression displayed the best performance 
with 97.31% accuracy. RF (96.64%), Extra Trees (96.08%), 
GBM (96.19%), and SVM (96.75%) follow, indicating that RF 
was the least effective indicator of prescriptive efficacy in 
malware detection.

Pathak et al. (2024) addressed the increasing menace of 
Android malware by applying an ML-based detection method 
with permission-based datasets. Simple classification 
algorithms were used to separate benign and malicious 
apps. A feature selection technique utilising Gradient 
Boosting Feature Importance (GBFI) was proposed for 
identifying important permissions and successfully creating 
feature vector dimensionality reduction. This reduction 
caused a considerable decrease in model training time 
while preserving classification performance. The findings 
proved that, with negligible loss of accuracy, the method 
proposed attained 93.96% accuracy and, in effect, improved 
execution time on all datasets compared to those applying 
the full set of features.

Angelo et al. (2023) aimed sophisticated and continuously 
emerging malware threats at Android-based IoT devices, 
posing immediate security concerns that demand the 
creation of appropriate detection frameworks tailored for 
devices with limited resources. To mitigate privacy issues 

tied to the exposure of sensitive application information, 
solutions based on Federated Learning concepts were 
developed. Unfortunately, such approaches tended to 
suffer from non-IID data distribution, impacting one’s 
accuracy and increasing both training time and conceptual 
time exponentially. A novel approach enhanced the 
application of Markov chains and association rules in a 
federated architecture for malware classification. This 
method achieved 99% mean accuracy while maintaining 
runtime efficiency relative to centralised models on diverse, 
unbalanced datasets.

Ahmed et al. (2023) employed ML and DL approaches to 
develop robust and efficient binary model classification for 
identifying ransomware on Android devices. The research 
used a publicly accessible Kaggle dataset comprising 
392,035 records of benign traffic and ten distinct forms of 
ransomware assaults. Two experiments were conducted: 
one including all features and the other utilising the 19 
most significant attributes picked. DT achieved the highest 
accuracy amongst the models at 97.24%, while SVM had the 
best recall, measuring at 100%.

Rathore et al. (2023) focused on developing a proactive, 
adversary-aware architecture to increase the Android 
models’ malware identification resilience. The study used 
two static variables, permissions and intentions, along 
with 18 classification techniques to examine the adversarial 
susceptibility of 36 models. With minimal adjustments, 
two specific Type-II evasion attacks were developed by 
reinforcement learning, achieving deception rates of 95.75% 
and 96.87%, respectively. These attacks significantly reduced 
model accuracy. Furthermore, the five most vulnerable 
Android licenses and intents were listed. A defensive 
method, termed Malware Vulnerability Patch (MalVPatch), 
was established, considerably improving detection accuracy 
and adversarial robustness across all models.

Akbar et al. (2022) proposed a permissions-based 
malware detection framework (PerDRaML) to categorise 
an application as malicious or benign based on its use of 
dubious permissions. The research utilised a multi-tiered 
approach, extracting key parameters including permissions, 
compact dimensions, and permission rates from annotated 
data sets of 10,000 programs. Diverse ML algorithms 
were employed to classify applications as either harmful 
or benign. The method attained significant detection 
accuracies of 89.96% using RF, 89.7% with SVM, while 
optimising 77% of the feature set and improving evaluation 
metrics like accuracy, sensitivity, and F-measure.

Urooj et al. (2022) employed deconstructed Android 
application functionalities and ML algorithms to identify 
vulnerabilities in mobile applications. There are two key 
contributions: first, a model that surpassed traditional 
processes by employing some of the most innovative 
static feature sets and one of the largest malware datasets 
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available. Furthermore, ensemble learning methods, 
including AdaBoost and SVM, were used to improve 
detection performance. The experiments achieved an 
accuracy rate of 96.24% at an FPR of 0.3. 

Research gap
•	 Limited exploration of lightweight CNN architectures for 

Android malware detection on resource-constrained 
devices despite high accuracy achieved in ensemble 
models (Nethala et al., 2025a).

•	 Underexplored adaptability of DL -based Android 
malware detection frameworks to realtime obfuscation 
techniques in dynamic threat landscapes (Rashid et al., 
2025).

•	 Lack of comparative analysis between feature-based and 
behaviour-based detection methods within Android 
malware ML models (Albazar et al., 2024).

•	 Insufficient proactive adversarial training strategies 
to fortify Android malware detection models against 
emerging Type-II evasion attacks (Rathore et al., 2023).

Research Methodology

Dataset Description
The RT-IoT2022 is a proprietary dataset derived from 
(Kaggle, 2022), including both benign and malicious network 
events, thereby offering a thorough depiction of real-
world scenarios. The RT-IoT2022 tool clarifies the intricate 
attributes of network traffic by aggregating data from 
IoT devices. It additionally replicates attack scenarios that 
include Brute-Force SSH attacks, DDoS attacks employing 
Hping and Slowloris, along with Nmap patterns. The 
Flowmeter plugin and Zeek monitoring tool meticulously 
document the bidirectional attributes of network flow.

The IoT infrastructure comprises two components: victim 
devices and attacker devices. A router links together these 
devices. An open-source application for monitoring network 
traffic, Wireshark assists in gathering traces and converting 
them into PCAP files. It is used to collect network data via a 
router. Fifty computers make up the attacking infrastructure, 
whereas the victim organisation’s 5 divisions total 422 
computers and 30 servers. Each machine’s system logs and 
network traffic are part of the dataset, which also contains 
80 characteristics derived from the collected traffic.

Techniques Used
The techniques that are used in this research are discussed 
in detail below:

Recursive Feature Elimination (RFE)
RFE is a feature selection technique that employs a wrapper 
approach to systematically eliminate the least significant 
features, determined by model weights or impact scores 
(Islam et al., 2023; Mahmoud & Garko, 2022). Given a feature 
set { }1 2 nF f , f , f= … , RFE fits a base estimator (e.g., RF), ranks 

features by importance, eliminates the weakest feature(s), 
and refits the model until the desired number of features k 
remains. This study employs RFE to minimise redundancy 
and augment model interpretability by picking the most 
informative features solely, thus enhancing classification 
accuracy and decreasing computing complexity.

Random Forest (RF)
This method of ensemble learning creates many decision 
trees throughout the training phase and uses the separate 
trees to determine the mean regression predictions or the 
mode of the classifications (Alsoghyer & Almomani, 2019; 
Kirubavathi & Regis Anne, 2024). Mathematically, for N trees 
{ }1 2 nT ,T , T… , the final predicted class  ŷ  is:

( ) ( ) ( )( )1 2 Ny majority _ vote T x ,T x , ,T xˆ = …   	 (1)

This study utilised RF due to its strong resistance to 
overfitting, capability to manage high-dimensional data, 
and interpretation. It is particularly effective for feature-rich 
malware detection tasks, offering high accuracy and stability 
across varied attack types in the RT-IoT2022 dataset.

Support Vector Machine (SVM)
SVM is a supervised learning method aimed at determining 
the optimal hyperplane that most effectively separates two 
classes within a feature space (Huang et al., 2019; Wadkar et 
al., 2020). Given training data 1{( , )} =

n
i i ix y ​ where ∈ d

ix R  
and { }1, 1∈ − +iy , SVM solves the following optimisation 
problem:

( )2

,

1min           1
2

+ ≥T
i iw b

w subject to y w x b
   	 (2)

SVMs work well in high-dimensional spaces and can simulate 
non-linear decision boundaries with kernel functions. It is 
a great tool for separating malicious from benign traffic 
patterns in Android-based malware detection.

Convolutional Neural Network (CNN)
A CNN is a DL model designed to autonomously and 
effectively learn a spatial structure of features by 
backpropagation, utilising filters (kernels) applied through 
convolution operations (Habeeb & Khaleel, 2025; Bala et al., 
2022). Mathematically, the convolution operation between 
input X and kernel K is defined as:

( ) ( )( ) ( ) ( ), * , , ,= = + +∑∑
m n

S i j X K i j X i m j n K m n  	 (3)

In this study, CNN is used to capture local feature patterns 
and spatial correlations among network flow attributes in 
the RT-IoT2022 dataset. Its capabilities in detecting low-
level feature structures make it appropriate for malware 
classification since low-level feature structure deviations 
in traffic behaviour might point to some malicious activity.
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Long Short-Term Memory (LSTM)
An enhanced type of RNN called LSTM is made to effectively 
recognise and preserve persistent dependencies in 
sequential data (Akhtar & Feng, 2022b). LSTM addresses the 
limitations of conventional RNNs by employing memory cells 
regulated by gating mechanisms to decide what to retain, 
discard, or produce at each time step (Grace & Sughasiny, 
2023; Kumar et al., 2023). In this study, LSTM is utilised to 
successfully extract temporal patterns in network traffic 
flows, which are important in detecting time-dependent 
behaviours linked to malware activities within Android 
environments. Its capability of retaining contextual flow-
based information renders it highly capable of separating 
benign and malignant traffic.
The core computation of an LSTM cell is represented as:

 		  (4)

where th  is the output, tc  is the cell state, and ,ti  ,  t tf o  are 
the input, forget, and output gates, respectively, enabling 
the model to learn relevant traffic behaviours over time.

Hybrid CNN-LSTM
The hybrid CNN-LSTM model amalgamates the benefits of 
both CNN and the LSTM networks, as illustrated in Figure 
2. While CNN is proficient in deriving spatial features and 
local patterns from data, LSTM does well with temporal 
dependencies and sequential activities (Shah & Nawaf, 
2024). This incorporation enables the model to learn both 
short-range and long-range relationships within the data 
(Choudhary et al., 2023; Mehrban & Ahadian, 2023). In 
this research work, the hybrid is designed to improve the 
accuracy of malware detection by seamlessly handling 
intricate flow-based features of networks to capture spatial 
and temporal characteristics crucial for differentiating 
benign versus malignant activities in Android environments.

Proposed Methodology
Figure 3 illustrates the detailed workflow of the malware 
detection approach utilising the RT-IoT2022 dataset. It 
starts with data collection, followed by a meticulous data 
preprocessing step that includes categorical encoding of 
variables such as protocol types, Scaling of flow-based 
features, and binary labelling, which classifies the traffic as 
either benign or malignant. After this, the feature selection 
process is performed using RFE, in which dimensionality 
is decreased while preserving the most salient features. 
The dataset is subsequently partitioned into subsets for 
training and testing to enhance model training and provide 
an impartial assessment. The model development phase 
includes the implementation of five classifiers: RF, SVM, 
CNN, LSTM, and a hybrid CNN-LSTM model. Each model 
undergoes 5-fold stratified cross-validation to ensure 

generalisability. Performance is evaluated using various 
metrics, and the output provides a binary classification 
indicating whether the network traffic is associated with 
benign or malignant (malicious) activity.

Proposed Algorithm

Algorithm: Malware Detection Using ML Models

BEGIN
Step 1. Dataset Collection and Labelling:
   LOAD dataset  

   FOR each   ∈ D DO
      IF   ∈ _Malicious Attacks  THEN
           ← 1   // Malignant
      ELSE
           ← 0   // Benign
   END FOR
Step 2. Data Preprocessing:
   REMOVE irrelevant columns (e.g., ‘no’)
   ENCODE categorical variables (proto, service) using LabelEncoder
   SCALE numerical features using MinMaxScaler
   STRATIFY and SHUFFLE the dataset to preserve class balance
Step 3. Train-Test Split:
   SPLIT D into _D train  and _D test  using 80:20 stratified splitting
Step 4. Feature Selection:
   COMPUTE correlation matrix for all features
   REMOVE features with correlation coefficient > θ
   APPLY RFE using RF on _D train
   SELECT top-k most important features → _ 'D train , _ 'D test
Step 5. Model Initialisation:
   DEFINE models = {RF, SVM, CNN, LSTM, CNN-LSTM}
Step 6. Model Training and Validation:
   FOR each model M ∈ models DO
      INITIALIZE M with default parameters
      APPLY Grid Search for hyperparameter tuning
      PERFORM 5-Fold Stratified Cross-Validation on _ 'D train

      FOR each fold f ∈ {1, 2, 3, 4, 5} DO
         TRAIN M on fold f _ train

         VALIDATE M on fold f _ val

         RECORD performance metrics: Accuracy _ f ,  Precision _ f ,  Recall _ f ,  F1_ f

      END FOR
      COMPUTE average metrics for M across five folds
   END FOR
Step 7. Model Evaluation on Test Set:
   FOR each model M ∈ models DO
      PREDICT labels  
      COMPUTE:
         Accuracy, Precision, Recall, F1-score
         Confusion Matrix
         ROC-AUC (if binary classification)
   END FOR
Step 8. Malware Detection Output:
   SELECT best-performing model M*
   FOR each xᵢ ∈ D _ test'  DO
         ← M*(xᵢ)
      RETURN    as:
         IF    = 1 THEN “Malignant”
ELSE “Benign”
END FOR
END
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Figure 4. Such skewness can bias models toward dominant 
classes and inflate overall accuracy, necessitating resampling, 
class-weighting, or anomaly-detection strategies to ensure 
robust and balanced attack detection across all categories.

The dataset distribution of features in Preprocessing is 
visualised through a correlation heatmap (before scaling), 
highlighting pairwise linear relationships among all 
variables. Strong positive correlations (dark red) are visible 
across groups such as packet counts, payload statistics, and 
inter-arrival times, while negative correlations (blue) appear 
less frequently, as shown in Figure 5. The dense diagonal 
confirms perfect self-correlation. This analysis reveals 
redundancy among several features, suggesting the need 
for dimensionality reduction or feature selection to avoid 
multicollinearity and improve model efficiency.

The dataset distribution in Preprocessing (After Scaling) 
shows that scaling preserved the key correlation patterns 
while normalising feature ranges. The outcome of this step 
is that no dominant feature skews the dataset, enabling 
fair comparison across variables. Figure 6 highlights 
multicollinearity in groups of related features, indicating 
the need for dimensionality reduction or feature selection 
to improve model efficiency and prevent redundancy in 
subsequent learning tasks.

The dataset was divided into a train set of 98,493 samples 
and a test set of 24,624 samples, preserving the original 
class ratio. Both sets show the same distribution with 89.8% 
benign (class 0) and 10.2% malicious (class 1), as illustrated in 
the pie charts (Figure 7). The outcome confirms that stratified 
splitting was applied successfully, ensuring that class 
imbalance is consistently maintained across training and 
testing. This step is crucial for unbiased model evaluation, 
preventing data leakage, and ensuring that performance 
metrics reflect real-world imbalance challenges.

Figure 8 shows the top 10 features ranked by RF, which 
play a crucial role in the detection methodology. The results 
indicate that flow_iat.min (0.345), fwd_iat.min (0.229), 
and active.min (0.143) are the most dominant features, 
emphasising the significance of inter-arrival time statistics 
and activity duration in differentiating attack from benign 
traffic. Other relevant attributes include fwd_iat.avg (0.083), 
active.max (0.061), fwd_iat.max (0.059), active.tot (0.027), 

Figure 3: Distribution of Original Attack Types
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Figure 2: CNN-LSTM model architecture (Bousmina et al., 2023)
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Result and Discussion

Evaluation Metrics
The evaluation metrics are defined using Eq. (1) to Eq. 
(4). These metrics are calculated for the evaluation of the 
proposed model.

TP TNAccuracy
TP TN FP FN

+
=

+ + +
            	 (5)

                          	 (6)

TPRecall
TP FN

=
+

               			    (7)

Precision*RecallF1 Score 2*
Precision Recall

=
+

      		    (8)

Where, TP = True Positive, TN = True Negative, FP = False 
Positive, FN = False Negative

Result Analysis
The dataset distribution comprises 123,117 records, heavily 
skewed with ~89.8% malicious traffic. The majority class 
indicate a pronounced long-tail imbalance as shown in 
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classify benign and malignant cases. RF achieved the 
strongest results among classical models with very few 
misclassifications, while SVM performed well but showed 
higher false positives and negatives. CNN improved further 
by reducing misclassifications, confirming its strength 
in spatial feature extraction. LSTM, however, failed to 
classify benign cases correctly, indicating the limitations 
of sequential-only learning. In contrast, the CNN-LSTM 
hybrid reached the most balanced performance, effectively 
combining CNN’s spatial learning with LSTM’s sequential 
modelling, thereby validating the proposed methodology 
as the most robust and reliable framework.

The performance evaluation of RF, SVM, CNN, LSTM, 
and CNN-LSTM in Table 1 shows each technique and 
validates the study’s methodological choices. RF achieved 
high accuracy (99.11%) with strong balance across metrics, 
reaffirming its reliability for structured feature classification. 
SVM followed closely (98.57% accuracy) but showed 
higher sensitivity to misclassifications, consistent with its 
performance in the confusion matrix. CNN outperformed 
SVM (98.71% accuracy) by better extracting spatial patterns, 
confirming the benefit of deep feature learning. In contrast, 
LSTM lagged significantly (89.84% accuracy) despite perfect 
recall, as it tended to over-classify malignant cases, reflecting 
the risks of sequential-only learning. The CNN-LSTM hybrid 
provided the most balanced and superior results (99.30% 
accuracy, 99.76% F1-score, 99.86% ROC-AUC), validating the 
hypothesis that combining CNN’s spatial representation with 
LSTM’s sequential modelling yields the most generalizable 
and effective classification framework.

Comparative Analysis
The comparative analysis table 2 presents the accuracy 
of different techniques against the proposed CNN-LSTM 
framework. The CNN model achieved 98.65%, while RF 
recorded 97.33%, showing the strength of these baseline 
approaches but also their limitations. The CNN + XGBoost 
hybrid improved further with an accuracy of 98.76%, 
highlighting the benefit of combining DL with boosting. 

Figure 4: Correlation Heatmap (Before Scaling)

Figure 5: Correlation Heatmap (After Scaling)

Figure 6: Train-Test Split

Figure 7: Top 10 Features

fwd_pkts_payload.avg (0.017), fwd_pkts_payload.tot 
(0.015), and bwd_iat.max (0.008). These findings validate the 
methodology’s feature selection stage, where timing- and 
activity-based metrics emerge as key discriminators, while 
payload-related variables contribute marginally.

The performance of five models was evaluated using 
confusion matrices (Figure 9) to assess their ability to 



The Scientific Temper. Vol. 16, No. 11	 Pallavi M. Shimpi and Nitin N. Pise	 4994

(a) RF (b) SVM

(C) CNN
(d) LSTM

(e) CNN-LSTM

Figure 8: Confusion Matrix

Table 1: Performance Evaluation

Model Accuracy (%) Precision (%) Recall (%) F1 (%) ROC-AUC (%)

RF 99.11 99.81 99.86 98.84 99.49

SVM 98.57 99.22 99.19 99.20 99.02

CNN 98.71 99.33 99.24 99.28 99.50

LSTM 89.84 89.84 100.00 94.65 91.77

CNN-LSTM 99.30 98.86 99.26 99.76 99.86

Table 2: Comparative Analysis

Author Model Accuracy (%) Precision (%) Recall (%) F1 (%)

Nethala et al., (2025) CNN 98.65 97.0 96.0 96.0

Kurniawan et al., (2025) RF 97.33 95.45 99.56 97.46

Zaidi et al., (2025) CNN + XGBoost 98.76 98.39 98.27 98.33

This study Proposed 99.30 98.86 99.26 99.76
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However, the proposed CNN-LSTM framework surpassed 
all with the highest accuracy of 99.30%, confirming its 
superiority and validating the methodological choice of 
integrating CNN’s spatial learning with LSTM’s sequential 
modelling for more reliable classification.

Conclusion
Android malware is a malicious program that exploits 
vulnerabilities in Android devices to steal data, disrupt 
operations, or gain unauthorized access. With the rapid 
growth of mobile apps and IoT systems, the threat landscape 
has become increasingly complex, demanding advanced 
detection mechanisms. The study successfully established 
that combining deep learning with traditional machine 
learning can significantly improve Android malware 
detection accuracy and robustness. Among all evaluated 
models, the proposed CNN-LSTM hybrid achieved the 
highest performance, recording 99.30% accuracy, 99.76% 
F1-score, and 99.86% ROC-AUC. These results validate 
the CNN-LSTM framework’s capability to capture both 
spatial and temporal features effectively, ensuring superior 
detection of complex malware patterns. Overall, the 
developed model provides a reliable and scalable solution 
for safeguarding Android and IoT systems against evolving 
security threats.

Acknowledgement
We would like to express our sincere gratitude to all those 
who contributed to the successful completion of this 
research. 

References
Kalsi, H. S. (2022). To Monitor Real-time Temperature and Gas in 

an Underground Mine Wireless on an Android Mobile. The 
Scientific Temper, 13(02), 14-18. https://doi.org/10.58414/
SCIENTIFICTEMPER.2022.13.2.02

Desani, N. R., & Chittibala, D. R. (2021). Adaptive Machine Learning 
Models for Real-Time Anomaly Detection in Streaming Data. 
Int. J. Inf. Technol. Manag. Inf. Syst, 12, 57-62. https://doi.
org/10.58414/SCIENTIFICTEMPER.2025.16.8.07

Kaur, A., Lal, S., Goel, S., Pandey, M., & Agarwal, A. (2024). Android 
malware detection system using machine learning. In 
Proceedings of the Sixteenth International Conference 
on Contemporary Computing (pp. 186–191). https://doi.
org/10.1145/3631428.3631492

Begum, A. J., Parveen, M., & Latha, S. (2023). IoT based home 
automation with energy management. The Scientific 
Temper, 14(03), 852-858. https://doi.org/10.58414/
SCIENTIFICTEMPER.2023.14.3.45

Nguyen, H. N., Vomvas, M., Vo-Huu, T., & Noubir, G. (2021, November). 
Wideband, real-time spectro-temporal RF identification. In 
Proceedings of the 19th ACM international symposium 
on mobility management and wireless access (pp. 77-86). 
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.01

Jung, J., Kim, H.-J., Cho, S., Han, S., & Suh, K. (2019). Efficient Android 
malware detection using API rank and machine learning. 
Journal of Internet Services and Information Security, 9(1), 

48–59.
Bromberg, Y.-D., & Gitzinger, L. (2020). Droidautoml: A microservice 

architecture to automate the evaluation of Android machine 
learning detection systems. In IFIP International Conference 
on Distributed Applications and Interoperable Systems 
(pp. 148–165). Springer. https://doi.org/10.1007/978-3-030-
50323-9_10

Almobaideen, W., Alghanam, O. A., Abdullah, M., Hussain, S. B., & 
Alam, U. (2025). Comprehensive review on machine learning 
and deep learning techniques for malware detection in 
Android and IoT devices. International Journal of Information 
Security, 24(3), 1–34. https://doi.org/10.1007/s10207-024-
00847-4

Abualigah, L., Gandomi, A. H., Elaziz, M. A., Hamad, H. A., Omari, 
M., Alshinwan, M., & Khasawneh, A. M. (2021). Advances 
in meta-heuristic optimization algorithms in big data text 
clustering.  Electronics,  10(2), 101. https://doi.org/10.58414/
SCIENTIFICTEMPER.2025.16.5.06

Balaji, V., Acharjee, P. B., Elangovan, M., Kalnoor, G., Rastogi, R., 
& Patidar, V. (2023). Developing a semantic framework 
for categorizing IoT agriculture sensor data: A machine 
learning and web semantics approach. The Scientific 
Temper, 14(04), 1332-1338. https://doi.org/10.58414/
SCIENTIFICTEMPER.2023.14.4.40

Amin, M., Tanveer, T. A., Tehseen, M., Khan, M., Khan, F. A., & 
Anwar, S. (2020). Static malware detection and attribution 
in Android bytecode through an end-to-end deep system. 
Future Generation Computer Systems, 102, 112–126. https://
doi.org/10.1016/j.future.2019.07.017

Faris, H., Habib, M., Almomani, I., Eshtay, M., & Aljarah, I. (2020). 
Optimising extreme learning machines using chains of 
salps for efficient Android ransomware detection. Applied 
Sciences, 10(11), 3706. https://doi.org/10.3390/app10113706

Akhtar, M. S., & Feng, T. (2022). Malware analysis and detection 
using machine learning algorithms. Symmetry, 14(11), 2304. 
https://doi.org/10.3390/sym14112304

Ahmed, S. F., Shawon, S. S., Bhuyian, A., Afrin, S., Mehjabin, A., 
Kuldeep, S. A., ... & Gandomi, A. H. (2025). Forensics and security 
issues in the Internet of Things. Wireless Networks, 1-36. 
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.09

Alhebsi, M. S. (2022). Android malware detection using machine 
learning techniques [Master’s thesis, University of Dubai].

Salehin, I., Islam, M. S., Saha, P., Noman, S. M., Tuni, A., Hasan, M. 
M., & Baten, M. A. (2024). AutoML: A systematic review on 
automated machine learning with neural architecture search. 
Journal of Information and Intelligence, 2(1), 52-81. https://
doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.42

Konwarh, R., & Cho, W. C. (2021). Fortifying the diagnostic-
frontiers with nanoscale technology amidst the COVID-19 
catastrophe. Expert Review of Molecular Diagnostics, 21(2), 
131-135. https://doi.org/10.1145/3502207

Rathore, H., Sahay, S. K., Rajvanshi, R., & Sewak, M. (2020). 
Identification of significant permissions for efficient 
Android malware detection. In International Conference 
on Broadband Communications, Networks and Systems 
(pp. 33–52). Springer. https://doi.org/10.1007/978-3-030-
63955-6_3

Wang, T., Xu, Y., Zhao, X., Jiang, Z., & Li, R. (2023). Android malware 
detection via efficient application programming interface 
call sequences extraction and machine learning classifiers. 



The Scientific Temper. Vol. 16, No. 11	 Pallavi M. Shimpi and Nitin N. Pise	 4996

IET Software, 17(4), 348–361. https://doi.org/10.1049/
sfw2.12162

Khan, F., Amanullah, S. I., & Selvarajan, S. (2025). Linear regressive 
weighted Gaussian kernel liquid neural network for 
brain tumor disease prediction using time series data. 
Scientific Reports, 15(1), 5912. https://doi.org/10.58414/
SCIENTIFICTEMPER.2025.16.2.03

Wajahat, M., Shahzad, R. K., Khalid, S., Noorwali, A., Rubaiee, S., & 
Ghazal, T. M. (2024). Improving Android malware detection 
using class-wise synthetic oversampling techniques. Applied 
Sciences, 14(16), 7101. https://doi.org/10.3390/app14167101

Suarez-Tangil, G., & Stringhini, G. (2020). Eight years of rider 
measurement in the Android malware ecosystem: Evolution 
and lessons learned. IEEE Transactions on Dependable and 
Secure Computing, 17(5), 1021–1035. https://doi.org/10.1109/
TDSC.2018.2878745

Gong, Y., Sun, L., Liu, Y., Li, M., & Tian, Z. (2020). DroidCat: 
Effective Android malware detection and categorization 
with structured network embedding. IEEE Transactions on 
Dependable and Secure Computing, 19(1), 197–210. https://
doi.org/10.1109/TDSC.2020.2964568

Jyothsna, V., Reddy, B. S. P., & Venkateswarulu, N. (2024). Malware 
detection in Android applications using machine learning: 
A survey. International Journal of Information Technology, 
16(2), 503–510. https://doi.org/10.1007/s41870-023-01267-

Nethala, V., Banu, S., Ahmad, A., Kabeer, M. A., & Erothu, P. (2025). 
An efficient Android malware detection model using 
machine learning algorithms. Sensors, 25(1), 218. https://doi.
org/10.3390/s25010218

El Hariri, M., Ezzati, A., & Benslimane, S. M. (2025). Android malware 
detection using machine learning and deep learning: 
A comparative study. Information, 16(2), 93. https://doi.
org/10.3390/info16020093

Rashid, M., Abulaish, M., & Raza, A. (2025). Permission-based feature 
selection for Android malware detection using machine 
learning techniques. Journal of Computer Virology and 
Hacking Techniques, 21(1), 35–50. https://doi.org/10.1007/
s11416-024-00540-w

Albazar, A., Alqahtani, H., Alamri, B., Alyami, H., Alqahtani, A., & 
Aljohani, A. (2024). Android malware detection using hybrid 
machine learning approaches. Computers, 13(5), 102. https://
doi.org/10.3390/computers13050102

Pathak, N., Agrawal, R., & Rajput, N. (2024). Android malware 
detection using machine learning techniques: A comparative 
study. SN Computer Science, 5(4), 297. https://doi.org/10.1007/
s42979-024-02577-1

D’Angelo, G., Ficco, M., & Palmieri, F. (2023). An edge-based system 
for effective Android malware detection in smart cities. 
Journal of Parallel and Distributed Computing, 172, 145–156. 
https://doi.org/10.1016/j.jpdc.2022.11.003

Albin Ahmed, M., Ahmed, S., Rahman, M. M., & Chowdhury, 
M. M. (2023). Android malware detection using machine 
learning on opcode sequences. Array, 18, 100312. https://
doi.org/10.1016/j.array.2023.100312

Rathore, H., Karuppayah, S., & Gokhale, A. (2023). A survey of deep 
learning for Android malware detection. ACM Computing 
Surveys, 55(14s), 1–38. https://doi.org/10.1145/3570958

Akbar, M. A., Afzal, M. K., Alshehri, M., & Mehmood, Z. (2022). 
A permission-based Android malware detection system 
using feature ranking and machine learning. IEEE Access, 10, 

19928–19940. https://doi.org/10.1109/ACCESS.2022.314960
Urooj, S., Naqvi, R. A., Naqvi, A. A., & Almuhaideb, A. M. (2022). 

Ensemble learning-based Android malware detection using 
hybrid features. Applied Sciences, 12(4), 2041. https://doi.
org/10.3390/app12042041

Kaggle. (2022). Android malware dataset. https://www.kaggle.
com/datasets

Islam, M. R., Hasan, M. K., & Hossain, M. S. (2023). Android malware 
detection using machine learning on system calls. Journal 
of Information Security and Applications, 71, 103417. https://
doi.org/10.1016/j.jisa.2023.103417

Mahmoud, Q. H., & Garko, Z. (2022). Android malware detection 
using machine learning algorithms and permissions. Journal 
of Computer Virology and Hacking Techniques, 18(4), 319–
331. https://doi.org/10.1007/s11416-021-00404-w

Alsoghyer, S., & Almomani, I. (2019). Evaluating machine learning 
algorithms for Android malware detection. In Proceedings 
of the 2019 International Conference on Electrical, Computer 
and Communication Engineering (ECCE) (pp. 1–5). IEEE. 
https://doi.org/10.1109/ECACE.2019.8679409

Kirubavathi, G., & Regis Anne, A. (2024). Android malware detection 
using deep learning architectures: A survey. Journal of King 
Saud University – Computer and Information Sciences, 36(5), 
524–536. https://doi.org/10.1016/j.jksuci.2021.12.00

Huang, W., Dai, H., & Wang, Y. (2019). Android malware detection 
using deep learning on network traffic. Future Generation 
Computer Systems, 95, 123–133. https://doi.org/10.1016/j.
future.2018.12.048

Wadkar, S., Agrawal, S., & Sharma, R. (2020). Android malware 
detection using hybrid machine learning approach. In 
2020 International Conference on Smart Electronics and 
Communication (ICOSEC) (pp. 1119–1123). IEEE. https://doi.
org/10.1109/ICOSEC49089.2020.9215327

Habeeb, R. A., & Khaleel, M. A. (2025). A hybrid approach for 
Android malware detection using permissions and API calls. 
PeerJ Computer Science, 11, e1789. https://doi.org/10.7717/
peerj-cs.178

Bala, A., Kaur, T., & Verma, P. (2022). Comparative analysis of 
machine learning techniques for Android malware detection. 
Multimedia Tools and Applications, 81, 37797–37814. https://
doi.org/10.1007/s11042-022-12641-7

Akhtar, M. S., & Feng, T. (2022). Android malware detection 
using hybrid features and ensemble learning. Journal of 
Information and Telecommunication, 6(4), 487–503. https://
doi.org/10.1080/24751839.2022.2070319

Grace, R. C., & Sughasiny, S. (2023). Android malware detection 
using permissions and intent filters with machine learning. 
International Journal of Computer Applications, 185(41), 
26–32. https://doi.org/10.5120/ijca202392267

Kumar, R., Singh, P., & Yadav, R. (2023). Machine learning-based 
framework for Android malware detection using API call 
sequences. Cluster Computing, 26, 3315–3329. https://doi.
org/10.1007/s10586-023-04165-2

Shah, A., & Nawaf, L. (2024). Android malware detection using 
deep learning models with opcode sequences. Journal of 
Information and Computational Science, 14(6), 551–560.

Choudhary, A., Sharma, R., & Gupta, M. (2023). An efficient 
permission-based Android malware detection system using 
feature selection. SN Applied Sciences, 5(2), 174. https://doi.
org/10.1007/s42452-022-05279-



4997	 THE SCIENTIFIC TEMPER, November 2025

Mehrban, S., & Ahadian, S. (2023). Deep learning-based static 
analysis approach for Android malware detection. Journal 
of Big Data, 10(1), 84. https://doi.org/10.1186/s40537-023-
00769-9

Bousmina, A., El Ouahidi, B., & Ouzzif, M. (2023). Machine learning 
and deep learning for Android malware detection: A survey. 
Procedia Computer Science, 219, 604–611. https://doi.
org/10.1016/j.procs.2023.01.214

Nethala, V., Banu, S., Ahmad, A., & Erothu, P. (2025). A deep learning-
based model for Android malware detection. Electronics, 

14(2), 451. https://doi.org/10.3390/electronics14020451
Kurniawan, H., Nugroho, A., & Sari, R. F. (2025). Comparative 

study of classical machine learning and deep learning for 
Android malware detection. Journal of Information Security 
and Applications, 80, 103656. https://doi.org/10.1016/j.
jisa.2025.103656

Zaidi, S. F. A., Khan, A., & Rauf, A. (2025). Android malware 
detection using improved random forest classifier and 
feature engineering. Applied Sciences, 15(3), 1225. https://
doi.org/10.3390/app15031225


