Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.02Keywords:
Random Forest, Malware Detection, Machine Learning, Android Ecosystem, Deep LearningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Android malware is a growing cybersecurity concern as malicious applications exploit vulnerabilities in the Android operating system to steal sensitive data, disrupt device functionality, or gain unauthorised control. The rising sophistication of these threats makes conventional signature-based detection techniques insufficient, highlighting the need for advanced learning-based solutions that adapt to evolving attack patterns. This study proposes a comparative evaluation of Machine Learning (ML) as well as Deep Learning (DL) models for Android malware detection using the RT-IoT2022 dataset, which contains diverse benign and malicious network traffic. Five models were implemented: Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and a hybrid CNN-LSTM. Experimental analysis showed that while RF and SVM achieved strong baseline results and CNN effectively extracted spatial features, LSTM alone struggled to classify balanced classes. The proposed hybrid CNN–LSTM achieved the best results with 99.30% accuracy and 99.76% F1-score. These findings validate the superiority of hybrid architectures and provide a pathway for lightweight, real-time, and adversarial-resistant malware detection systems for Android and Internet of Things (IoT) environments.Abstract
How to Cite
Downloads
Similar Articles
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ashutosh Pathak, Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vaishali Yeole, Rushikesh Yeole, Pradheep Manisekaran, Analysis and prediction of stomach cancer using machine learning , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

