Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.02Keywords:
Random Forest, Malware Detection, Machine Learning, Android Ecosystem, Deep LearningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Android malware is a growing cybersecurity concern as malicious applications exploit vulnerabilities in the Android operating system to steal sensitive data, disrupt device functionality, or gain unauthorised control. The rising sophistication of these threats makes conventional signature-based detection techniques insufficient, highlighting the need for advanced learning-based solutions that adapt to evolving attack patterns. This study proposes a comparative evaluation of Machine Learning (ML) as well as Deep Learning (DL) models for Android malware detection using the RT-IoT2022 dataset, which contains diverse benign and malicious network traffic. Five models were implemented: Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and a hybrid CNN-LSTM. Experimental analysis showed that while RF and SVM achieved strong baseline results and CNN effectively extracted spatial features, LSTM alone struggled to classify balanced classes. The proposed hybrid CNN–LSTM achieved the best results with 99.30% accuracy and 99.76% F1-score. These findings validate the superiority of hybrid architectures and provide a pathway for lightweight, real-time, and adversarial-resistant malware detection systems for Android and Internet of Things (IoT) environments.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

