Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.05Keywords:
Coronary Heart Disease (CHD) Prediction, Balanced Ensemble Learning, Preprocessing, Noise Reduction, Prediction AccuracyDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Coronary Heart Disease (CHD) is still one of the leading causes of death worldwide, which necessitates early and reliable prediction methods to support timely medical interventions. Traditional machine learning approaches frequently struggle with noisy and imbalanced datasets which leading to biased predictions and reduced diagnostic reliability. To address these limitations, this paper proposes the CleanBalance-EnsembleCHD algorithm that combines data cleaning, balancing, and ensemble learning to improve prediction accuracy. The goal is to reduce noise, handle imbalance, and combine the strengths of multiple classifiers to detect CHDs more effectively. For noise reduction, the methodology employs Edited Nearest Neighbor (ENN) and Iterative Partitioning Filter (IPF), if imbalance persists Synthetic Minority Oversampling Technique (SMOTE) used. Five classifiers namely Rotation Forest, LogitBoost, Multilayer Perceptron, Logistic Model Trees (LMT), and Random Forest were trained, with the best models chosen for weighted soft-voting ensemble integration. The experimental evaluation on a CHD dataset with an initial class imbalance (maj/min ratio: 1.038, Gini index: 0.4998) revealed significant improvements. After ENN and IPF cleaning, the dataset was reduced from 1011 to 853 balanced instances (class counts: {1.0=414, 0.0=439}). Individual classifiers performed well, with accuracies of 97.36% (Rotation Forest), 94.72% (LogitBoost), 96.04% (Multilayer Perceptron), 97.95% (LMT), and 98.53% (Random Forest). After that, the top three models chosen Random Forest, LMT, and Rotation Forest were combined into an ensemble that outperformed all individual models on the test set, with Accuracy: 99.42%, F1-score: 0.9939, and MCC: 0.9884. These findings show that CleanBalance-EnsembleCHD provides superior predictive reliability leading to noise-resistant and balanced decision-making. Finally, the proposed framework provides a powerful and interpretable solution for early CHD detection using the potential to help clinicians with risk assessment and medical decision support.Abstract
How to Cite
Downloads
Similar Articles
- P. K. MISHRA, S. K. SHARAN, M. K. SINHA, D. CHAKRAVORTY, DETERMINATION OF TEMPERATURE SENSITIVE DIAPAUSE TERMINATION STATE OF DABA TRIVOLTINE ECORACE OF ANTHERAEA MYLITTA DRURY , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Sharanya Unnikrishnan, Eldhose Thomas, Arunima Dey, AI-Powered NLP in Vernacular Public Relations: Opportunities, Challenges, and Ethical Implications for India’s Multilingual Landscape , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- ALKA SRIVASTAVA, SANJAY KUMAR, STUDY OF NUTRIENT VALUE IN POST HARVESTED INFECTED ORANGE (CITRUS SINENSIS) FRUIT , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- S. Sathiyavathi, V. Mathivannan, Selvi. Sabhanayakam, Cd4+ CELL COUNTS IN THE PATIENTS OF HIV INFECTED IN SALEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Chhavi Kaushik, A.K. Chaubey, STUDIES ON THE EFFICACY OF NEEM AND FUNGAL ISOLATES ON MELOIDOGYNE INCOGNITA INFESTING SOLANUM MELONGENA L. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- S. Vaishali, M. Mary Mejrullo Merlin, The Study on Plithogenic Fuzzy Sets & its Properties , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Reena Lawrence, Kapil Lawence, Manisha Prasad, Ritika Singh, ANTIOXIDANT ACTIVITY OF METHANOL EXTRACT OF ZINGIBER OFFICINALE GROWN IN NORT INDIAN PLAINS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Maheshbhai R. Jakhotra, Sanjay Gupta, A Study on the Design and Effectiveness of a Spoken English Program for Gujarati Medium Secondary School Students (Aged 14–15) , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- ASHOK KUMAR, SADGURU PRAKASH, MARKANDEY MISHRA, MARIGOLD AS A TRAP CROP FOR THE MANAGEMENT OF TOMATO FRUIT BORER, HELICOVERPA ARMIGERA IN TARAI REGION OF UTTAR PRADESH , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.

