Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.05Keywords:
Coronary Heart Disease (CHD) Prediction, Balanced Ensemble Learning, Preprocessing, Noise Reduction, Prediction AccuracyDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Coronary Heart Disease (CHD) is still one of the leading causes of death worldwide, which necessitates early and reliable prediction methods to support timely medical interventions. Traditional machine learning approaches frequently struggle with noisy and imbalanced datasets which leading to biased predictions and reduced diagnostic reliability. To address these limitations, this paper proposes the CleanBalance-EnsembleCHD algorithm that combines data cleaning, balancing, and ensemble learning to improve prediction accuracy. The goal is to reduce noise, handle imbalance, and combine the strengths of multiple classifiers to detect CHDs more effectively. For noise reduction, the methodology employs Edited Nearest Neighbor (ENN) and Iterative Partitioning Filter (IPF), if imbalance persists Synthetic Minority Oversampling Technique (SMOTE) used. Five classifiers namely Rotation Forest, LogitBoost, Multilayer Perceptron, Logistic Model Trees (LMT), and Random Forest were trained, with the best models chosen for weighted soft-voting ensemble integration. The experimental evaluation on a CHD dataset with an initial class imbalance (maj/min ratio: 1.038, Gini index: 0.4998) revealed significant improvements. After ENN and IPF cleaning, the dataset was reduced from 1011 to 853 balanced instances (class counts: {1.0=414, 0.0=439}). Individual classifiers performed well, with accuracies of 97.36% (Rotation Forest), 94.72% (LogitBoost), 96.04% (Multilayer Perceptron), 97.95% (LMT), and 98.53% (Random Forest). After that, the top three models chosen Random Forest, LMT, and Rotation Forest were combined into an ensemble that outperformed all individual models on the test set, with Accuracy: 99.42%, F1-score: 0.9939, and MCC: 0.9884. These findings show that CleanBalance-EnsembleCHD provides superior predictive reliability leading to noise-resistant and balanced decision-making. Finally, the proposed framework provides a powerful and interpretable solution for early CHD detection using the potential to help clinicians with risk assessment and medical decision support.Abstract
How to Cite
Downloads
Similar Articles
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Meera Yadav, F. D. Yadav, Effect of TLCV on Metabolic Parameter and Yield of Tomato , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- P. N. Malleswari, P. V. S. Gupta, S. V. M. Vardhan, D. Ramachandran, Quantitative estimation of ethanol content in eribulin mesylate injection using headspace gas chromatographic with flame ionization detector [HS-GC-FID] , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Geeta S Desai, Santosh Hajare, Sangeeta Kharde, Prevalence of non-alcoholic steatohepatitis in a general population of North Karnataka , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. S. Singh, S. S. Rath, S. S. Singh, EFFECT OF NUMBER OF FEEDING ON DISEASE INCIDENCE IN TASR SILKWORM, ANTHERAEA MYLITTA D. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.

