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Abstract

Coronary Heart Disease (CHD) is still one of the leading causes of death worldwide, which necessitates early and reliable prediction
methods to support timely medical interventions. Traditional machine learning approaches frequently struggle with noisy and
imbalanced datasets which leading to biased predictions and reduced diagnostic reliability. To address these limitations, this paper
proposes the CleanBalance-EnsembleCHD algorithm that combines data cleaning, balancing, and ensemble learning to improve
prediction accuracy. The goal is to reduce noise, handle imbalance, and combine the strengths of multiple classifiers to detect CHDs
more effectively. For noise reduction, the methodology employs Edited Nearest Neighbor (ENN) and Iterative Partitioning Filter (IPF),
if imbalance persists Synthetic Minority Oversampling Technique (SMOTE) used. Five classifiers namely Rotation Forest, LogitBoost,
Multilayer Perceptron, Logistic Model Trees (LMT), and Random Forest were trained, with the best models chosen for weighted soft-
voting ensemble integration. The experimental evaluation on a CHD dataset with an initial class imbalance (maj/min ratio: 1.038, Gini
index: 0.4998) revealed significant improvements. After ENN and IPF cleaning, the dataset was reduced from 1011 to 853 balanced
instances (class counts: {1.0=414, 0.0=439}). Individual classifiers performed well, with accuracies of 97.36% (Rotation Forest), 94.72%
(LogitBoost), 96.04% (Multilayer Perceptron), 97.95% (LMT), and 98.53% (Random Forest). After that, the top three models chosen
Random Forest, LMT, and Rotation Forest were combined into an ensemble that outperformed all individual models on the test set,
with Accuracy: 99.42%, F1-score: 0.9939, and MCC: 0.9884. These findings show that CleanBalance-EnsembleCHD provides superior
predictive reliability leading to noise-resistant and balanced decision-making. Finally, the proposed framework provides a powerful and
interpretable solution for early CHD detection using the potential to help clinicians with risk assessment and medical decision support.

Keywords: Coronary Heart Disease (CHD) Prediction, Balanced Ensemble Learning, Preprocessing, Noise Reduction, Prediction Accuracy.

Introduction

Coronary heart disease (CHD) is a leading cause of death
worldwide and greatly burdens healthcare systems
(Hammoud, A., Karaki, A., Tafreshi, R., Abdulla, S., & Wahid,
M.F. 2024). Early detection of CHD can help save lives, but
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the complexity of risk factors makes it difficult (Song, J.
2024). Machine learning makes it possible to detect hidden
patterns in medical data and make accurate CHD predictions
possible (Dubey, M., Tembhurne, J., & Makhijani, R. 2024).
But quality, imbalance, noise, and duplicates affect the
performance of the prediction model (Al-Ssulami, A.M.,
Alsorori,R.S., Azmi, A.M., & Aboalsamh, H. 2023). Traditional
ML models in CHD prediction are weakened by noise and
unbalanced data, misclassifying a minority of cases. Thus,an
intelligent framework is needed that combines the strengths
of classifiers, overcoming quality and imbalance (Wanyonyji,
M., Morris, Z.N., Musyoka, F.M., & Kitavi, D.M. 2025).

Many studies have used machine learning methods
such as SVM, KNN, decision trees, bagging, and boosting
for CHD prediction. Over/undersampling methods were
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used to overcome the imbalance, and feature selection
and dimensionality reduction were used for performance
improvement. Despite improvements, oversampling causes
artificial noise and undersampling causes valuable data loss.
Many models fail to remove noise/overlapping records,
resulting in overfitting and poor generalization. Relying on
a single classifier limits robustness, as no single algorithm
performs consistently well across all datasets; thus, a unified
strategy that combines quality, balance improvement, and
multiple classifiers is necessary.

To address these shortcomings, the study introduces
CleanBalance-EnsembleCHD, a new CHD framework that
integrates data cleaning, balancing, and ensemble learning.
Reliable models with noise reduction are generated by the
Edited Nearest Neighbor (ENN) and Iterative Partitioning
Filter (IPF); if there is imbalance, the class is balanced by the
Synthetic Minority Oversampling Technique (SMOTE). The
cleaned data is trained on classifiers such as RotationForest,
LogitBoost, MultilayerPerceptron (MLP), Logistic Model Trees
(LMT), and RandomForest; Weighted Soft-Voting Ensemble
Learning is used to combine the best models and increase
prediction accuracy and reliability.

The framework begins with data analysis, imbalance
detection, and Gini index computation. It systematically
improves dataset quality by using ENN and IPF, subsequent
to SMOTE as needed. After creating a balanced dataset,
stratified sampling is used to ensure fair train-test splits.
The framework takes advantage of the diversity of classifiers
by selecting the best-performing models for Ensemble
Integration. The final ensemble significantly outperformed
the individual models.

The key contributions of this work are:
«  Proposing CleanBalance-EnsembleCHD algorithm which
is an integrated pipeline combining noise removal,
balancing, and ensemble learning for CHD prediction.
Employing ENN and IPF to clean noisy and overlapping
records while preserving representative samples.
Using stratified sampling and balanced dataset
preparation to avoid bias.
Training various classifiers with building a weighted
soft-voting ensemble using the top-performing models.
«  Showing superior performance with high accuracy,
F1-score, with MCC which guarantees reliability in
medical prediction contexts.
The goal of this study is to design a noise-resilient, and
also balanced ensemble framework that guarantees robust
with accurate prediction of coronary heart disease.

The specific objectives contain:
«  Toclean and balance the CHD dataset for unbiased
learning.
«  To assess multiple classifiers and detect the most
effective ones.

« To construct a weighted ensemble model that
utilizes classifier complementarity.
- Tovalidate the proposed approach utilizing rigorous
performance metrics.

CleanBalance-EnsembleCHD is unique in that it
combines ENN-IPF-SMOTE preprocessing with ensemble
incorporation of various sophisticated classifiers to ensure
data quality and predictive robustness. Unlike previous
work, it systematically handles noise, overlap, and imbalance
before model training leading to more accurate outcomes.

The proposed framework can be utilized in clinical
decision support systems, hospitals, and health monitoring
platforms to assist physicians in early CHD detection and
risk assessment. Its adaptability also makes it applicable to
other medical domains where data imbalance and noise
are common. The remainder of this paper is organized
as follows: Section 2 presents the related works of the
proposed methodology in detail. Section 3 describes dataset
preparation and preprocessing and the details about the
CleanBalance-EnsembleCHD algorithm. Section 4reports
experimental results and performance analysis. Section 5
concludes the study and shows future research directions.

Literature Review
Recently, research is underway to improve the accuracy
and reliability of diagnosis by using machine learning to
predict CHD. Khdair, H.S., & Dasari, N. (2021) examined
several ML algorithms in CHD prediction and emphasized
the importance of accurate handling of clinical data.
Ayon, S.1., Islam, M.M., & Hossain, M.R. (2020)
demonstrated in a computational intelligence comparison
that ensemble methods perform better than individual
classifiers in capturing complex patterns in CHD data.
Poonkuzhali, R., Pavithra, S., Kumar, K.S., & Nallusamy, C.
(2024) demonstrated the effectiveness of feature selection
using ML approaches to predict CHD in large experiments.
AmoghVarshith, 1.P., Kumar, S., Harika, D., D.Haritha,
& Priyanka, P. (2024) compared several methods and
emphasized the benefits of ensemble strategies in
improving accuracy in predicting CHD outcomes. Srinija,
P., & Pranay, V. (2025) evaluated classifiers on benchmark
data and emphasized that model performance is affected
by preprocessing and equalization techniques.

Guo, H. (2023) compared five ML models and found
that the mixed and ensemble approaches provided higher
accuracy than single models. Rasheed, M., Khan, M.A.,
Elmitwally, N.S., Issa, G.F., Ghazal, T.M., Alrababah, H., &
Mago, B. (2022) proposed an ML framework for predicting
CHDin a cyber resilience context and emphasized that data
preprocessing is important for robust performance.

Keshav Srivastava, D., Choubey, K., & Choubey, D.K. (2020)
emphasized the important role of data mining techniques
with ML models to improve prediction accuracy. Omkari,
D.Y., & Shaik, K. (2024) combined multiple classifiersin a TLV
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Table 1: Summary Table

Authors Methods

Key Findings

Limitations

Khdair & Dasari [6] Applied multiple machine learning

techniques for CHD prediction

Ayon et al. [7] Comparative study of
computational intelligence

techniques

Poonkuzhali et al. [8] Supervised ML algorithms

AmoghVarshith et al. [9] Multiple ML algorithms

Srinija & Pranay [10] Machine learning-based CHD

prediction

Guo [11] Comparative study with five ML

models

Rasheed et al. [12] Systematic evaluation of ML

methods

Srivastava et al. [13] Machine learning and data mining

Omkari & Shaik [14] Two-layered voting (ensemble)

framework

Mohd et al. [15] Survey of ML techniques

Kavitha et al. [16] Hybrid ML model

Showed potential of ML in analyzing
complex medical datasets

Demonstrated variation in accuracy
across techniques

Showed adaptability to patient
datasets

Improved prediction efficiency
Reliable detection in small datasets

Identified trade-offs between
complexity and performance

Highlighted improved generalization
Hybrid methods boosted prediction

Achieved higher performance via
ensemble

Provided comprehensive overview of
heart disease ML methods

Achieved superior prediction accuracy

Did not address
class imbalance and
interpretability

Lack of unified ensemble
approach

Limited exploration of hybrid
models

Scalability issues with larger
datasets

Poor generalization to
diverse populations

Limited scope of models
tested

Lacked ensemble integration

Data preprocessing
challenges not fully solved

Increased computational
complexity

No experimental validation

Complexity and

interpretability issues remain

framework for CHD prediction and demonstrated that multi-
layered ensembles improved performance and consistency
over individual ensembles.

Mohd, N., Sharma, J., & Upadhyay, D. (2021) identified
challenges such as class imbalance and noise in CHD
prediction, revealing that they can affect generalization.
Kavitha, D.M., Gnaneswar, G., Dinesh, R., Sai, Y.R., & Suraj, R.
(2021) developed a hybrid ML model that combines multiple
classifiers and showed that it significantly reduces error rates.

Although current research confirms the strength of
ML in CHD prediction, noisy data, class imbalance, and
generalization deficiencies remain ongoing issues. These
limitations highlight the need for a robust framework that
integrates data cleaning, balancing, and ensemble learning
of CleanBalance-EnsembleCHD (Table 1).

Materials and Methods

This section explains the procedural background of
the CleanBalance-EnsembleCHD framework for CHD
prediction. To overcome noise, class imbalance, and sample
heterogeneity issues, CleanBalance-EnsembleCHD will
integrate preprocessing, data cleaning, equalization, and
ensemble modeling steps.

This algorithm follows a structured pipeline that
combines data preparation, noise reduction via an Edited
Nearest Neighbors (ENN)/Iterative Partitioning Filter (IPF),
class balancing via a Synthetic Minority Oversampling

Technique (SMOTE), and model training with a Weighted
Soft-Voting group.

Thisdesign combines noisy data removal, misclassification
correction, class imbalance correction, and ensemble
learning to ensure fairness and robustness by integrating
multiple classifiers. This creates a reliable predictive
framework across multiple populations; Algorithm 1 shows
CleanBalance-EnsembleCHD.

The CleanBalance-EnsembleCHD algorithm predicts
coronary heart disease (CHD) by combining data cleaning,
balancing, addition to ensemble learning in a structured
workflow. It starts by examining class distribution and
measuring imbalances with the imbalance ratio and Gini
Index. To improve data quality, noisy and overlapping
samples are removed using Edited Nearest Neighbors (ENN),
and also instances that are consistently misclassified are
filtered out using the Iterative Partitioning Filter (IPF). The
cleaned dataset is then balanced with SMOTE to produce
synthetic samples for the minority class. After dividing the
balanced data into training and testing sets, various classifiers
such as RotationForest, LogitBoost, MultilayerPerceptron,
Logistic Model Trees, and also RandomForest are trained
and tested using cross-validation. The best-performing
models, as determined by F1 scores, are combined using
a weighted soft voting ensemble. Finally, the ensemble is
tested on unseen data, as well as its performance is assessed
using accuracy, precision, recall, F1-score, and MCC. The
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Algorithm 1: CleanBalance-EnsembleCHD
Input: PFHD dataset (Preprocessed & Feature-selected)
Output: Best-performing ensemble model for CHD prediction

1: Analyze class distribution — detect imbalance
2: IR «— N_majority / N_minority
3:Gini«— 1-% (p_i)A2

4: D_ENN « Apply ENN(D) // remove noisy/overlapping samples
5: BaseModel < Train(RandomForest, D_ENN)

6: D_IPF « RemoveMisclassified(D_ENN, BaseModel) // IPF
filtering

7:D_balanced « ApplySMOTE(D_IPF)
8: (D_train, D_test) < StratifiedSplit(D_balanced)

9: Models < {RotationForest, LogitBoost, MLP, LMT,
RandomPForest}
10: For each model m in Models do
Train m on D_train
Evaluate m using 5-fold CV — F1_m, MCC_m
End For

11: TopModels < Select models with highest F1 scores
12: Ensemble « WeightedSoftVoting(TopModels, weights =
F1_m)

13: Predictions < Ensemble(D_test)
14: Evaluate Predictions using {Accuracy, Precision, Recall, F1,
MCC}

15: BestModel « Select configuration with highest balanced
performance
16: Save(BestModel)

best configuration is saved for integration into the full CHD
prediction framework. Figure 1 shows the flow diagram of
CleanBalance-EnsembleCHD algorithm.

The flow diagram of the CleanBalance-EnsembleCHD
algorithm depicts the entire pipeline for predicting CHD. It
cleans noisy data, balances classes, trains diverse classifiers,
as well as combines the best models using weighted soft
voting to deliver accurate with reliable CHD predictions.

Dataset Preparation

The experimental dataset utilized in this study is known
as the Preprocessed and Feature-Selected Heart Disease
(PFHD) dataset. It was created by combining five benchmark
CHD datasets commonly used in machine learning research:
Cleveland, Hungarian, Long Beach, Switzerland, and Statlog.
Each dataset comes from various clinical settings which
ensures a diverse range of patient demographics and
medical profiles. Eq. (1) shows Dataset Representation.

D={(x,vV)|xieRN vye{01}, i=1,2,.,N} (1)

where:

D: dataset

xi: n-dimensional feature vector of patient i
yi: binary target class (0 = no CHD, 1 = CHD)
N: total number of patient records

Eq. (1) formally defines the dataset as a set of feature
vectors with corresponding class labels. Each patient
record contains multiple clinical features, while the class
label indicates whether the patient has CHD or not. This
mathematical representation serves as the foundation for
all future preprocessing, with modeling steps. This unified
dataset improves generalizability by combining diverse
patient populations, making the proposed framework more
robust to dataset-specific biases. The dataset preparation is
a critical step in ensuring that the CHD prediction framework
uses reliable with representative data. Raw clinical datasets
frequently contain incomplete records, irregular patterns,
as well as irrelevant features, which can skew the learning
process. Consequently, a structured preprocessing pipeline
is applied prior to model training.

First, missing data are handled and incomplete entries
are filled in to ensure consistency and fairness across all
patient samples. Then, as outliers are removed, the learning
algorithm avoids false conclusions and creates a dataset that
accurately reflects the underlying population. After that,
normalization is done to equalize the different ranges of

PFHD D Imbalance Remove Noisy Filter ;?;;r:tti:
) Dataset Check (IR, Gini[—»| & Overlapping [—>f Misclassified [—>| (W € ¢
(Combined CHD Index) Samples Instances ority
Records) Samples
Train Diverse Classifiers: v
Weighted Soft Cross- R':au:nBFOTSt Train-Test
Voting |« Validation (F1, [ _-ogitB0os < Partition
Ensemble MCC, etc.) MultilayerPerceptron (Stratified)
d Logistic Model Trees (LMT)
RandomForest
¥
CHD Prediction| | S2veFinal
Output »  Ensemble
e Model

Figure 1: Flow diagram of CleanBalance-EnsembleCHD algorithm
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medical features (fat, blood pressure, age), otherwise some
variables will be more influential than others.

By equalizing features, each attribute contributes
equally; feature selection identifies key variables in CHD
prediction and eliminates unnecessary ones. This step
focuses on clinical factors, structures and balances the data,
and creates the foundation for accurate and generalizable
CHD prediction.

Class Imbalance Analysis

For sample reliability, the class distribution was examined
and the skewness of the data was estimated through the
majority-minority ratio. Eq. (2) shows Imbalance Ratio.

IR = N_majority / N_minority (2)

Where:

IR = Imbalance Ratio

N_majority = Number of majority class samples
N_minority = Number of minority class samples

The imbalance ratio measures how skewed the dataset is
by comparing the number of majority and minority class
samples. A higher imbalance ratio indicates that one
class significantly outperforms the other that may bias
the classifier to predict the majority class more frequently.
Impurity in class distribution was additionally measured to
determine dataset bias. The Gini Index was used to measure
inequality between class labels. Eq. (3) shows Gini Index.

Gini=1-% (p_i)A2 (3)

Where:
Gini = Gini Index value
p_i = Probability of class i in the dataset
¥ = Summation across all classes

The Gini Index measures the impurity or inequality in
class distribution. If all patients belong to the same class,
the Gini value is zero, indicating perfect purity. A higher Gini
value reflects a more balanced but potentially noisy class
distribution, making it useful for assessing dataset fairness.

Noise and Overlap Reduction
The dataset may contain noisy or overlapping records that
reduces classifier performance. To improve quality, Edited
Nearest Neighbors (ENN) was used to remove instances
that cause excessive overlap between classes. This filtering
ensures that only reliable and representative data points are
used for training. Equation (4) depicts the quality measure
for samples.

Q(x) = d(x, y_same) - d(x, y_diff) (4)
Where:
Q(x) = Quality measure for a sample x
d(x, y_same) = Distance between x and nearest neighbor
of the same class
d(x, y_diff) = Distance between x and nearest neighbor of
a different class

This quality metric compares how close a data point is to
its nearest neighbor in the same class versus one from the
opposite class. A positive value indicates that the sample
is more similar to its own class which implies reliability,
whereas negative or small values may indicate noisy or
overlapping data. ENN systematically removes potentially
misleading samples, increasing the dataset’s robustness.

Iterative Partition Filtering
Iteratively removing instances that were consistently
misclassified by a trained model helped to refine the dataset
even more. This filtering step ensured which borderline or
mislabeled data did not reduce model performance. Eq. (5)
shows Misclassification Error.
M_error =|y_true - y_pred| (5)

Where:
M_error = Misclassification error for a sample
y_true = True class label
y_pred = Predicted class label

Eqg. (5) quantifies the difference between a sample’s
true and predicted labels. A value of zero indicates that
the prediction is correct, whereas a nonzero value indicates
an error. lteratively filtering out such misclassified records
makes the dataset cleaner and more robust.

Data Balancing
Following cleaning, synthetic samples for the minority class
were created to balance class representation. This step
ensured that classifiers were not biased toward the majority
class. Eq. (6) demonstrates Synthetic Sample Generation.

X_new = x_minority + A * (x_neighbor - x_minority) (6)
Where:
x_new = Generated synthetic minority sample
X_minority = Existing minority sample
x_neighbor = Nearest neighbor of the minority sample
A =Random number between 0 and 1

Eqg. (6) describes how to generate new synthetic samples

for the minority class. Realistic synthetic examples are
created by interpolating between an existing minority
sample and one of its neighbors with applying a random
scaling factor. This balances the dataset and lowers bias
towards the majority class.

Train-Test Partitioning

To evaluate model performance, the balanced dataset was
divided into two subsets: training and testing. To keep
relative class proportions consistent across splits which a
stratified approach was used. Eq. (7) indicates Train-Test
Partitionin.

D =D_train U D_test, D_train N D_test=0 (7)

Where:
D = Complete dataset
D_train = Training subset
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D_test = Testing subset

@ = Empty set, indicating no overlap between splits

This expression ensures that the dataset is split into two
disjoint subsetsshows training data used for model learning,
and testing data used for evaluation. The non-overlapping
condition guarantees that the evaluation remains unbiased
by preventing data leakage.

Model Training

Multiple classifiers were trained on the processed training set
to capture a variety of decision boundaries. RotationForest,
LogitBoost, MLP, LMT, and RandomForest were selected for
their diversity, as they offer different learning methods and
strengths:

Rotation forest

Randomly rotating features and learning from a different
subset of features improves accuracy and reduces
correlation.

LogitBoost
Reduces logistic loss, engages weak learners, and provides
accurate probabilities by handling complex boundaries.

MLP

A neural classifier that learns nonlinear relationships with
hidden layers and captures complex medical data.

LMT
Combines decision trees and logistic regression to provide
clarity and precision to medical data.

RandomForest
Combines multiple random decision trees, preventing
overfitting and handling high-dimensional data and feature
importance.

Eq. (8) demonstrates the classifier prediction function.

h_m(x) =f_m(W_m, x) (8)

Where:
h_m(x) = Prediction of classifier m
f_m = Mapping function for classifier m
W_m = Learned parameters of classifier m
x = Input feature vector

Eq. (8) processes each classifier input and predicts the
class label. Combining models such as RotationForest,
LogitBoost, MLP, LMT, RandomForest, etc., the various
strategies combine to provide robust and generalized
prediction.

Model Evaluation

Each classifier was evaluated using multiple metrics to
ensure balanced performance across both classes. Key
metrics included accuracy, precision, recall, F1-score, and
MCC. Eq. (9-13) shows Evaluation Metrics.

Accuracy = (TP +TN) /(TP + TN + FP + FN) 9)
Precision=TP /(TP + FP) (10)
Recall=TP /(TP + FN) (11)

F1 =2 * (Precision * Recall) / (Precision + Recall) (12)

MCC = (TP*TN - FP*FN) / sqrt((TP+FP)(TP+FN) (13)
(TN+FP)(TN+FN))
Where:
TP = True Positives
FP = False Positives
FN = False Negatives
TN =True Negatives
These equations Eq. (9-13) define standard evaluation
metrics. Accuracy measures overall correctness, Precision
focuses on how many positive predictions are correct,
recall captures how many actual positives are identified,
F1-score balances Precision and Recall, and MCC provides
a correlation-based measure of classification quality even
in imbalanced settings. Together, these metrics provide a
comprehensive evaluation of model performance.

Ensemble Construction

Top-performing classifiers were combined using a weighted
soft voting ensemble. Each model’s prediction contributed
to the final decision in proportion to its F1-score. Eq. (14)
shows Weighted Soft Voting.

P finallc)=Z (w_m*P_m(c))/Xw_m (14)

Where:
P_final(c) = Final probability for class ¢
P_m(c) = Predicted probability of class c by model m
w_m = Weight of model m based on its F1-score
¥ = Summation across selected models

This ensemble method combines the predictions
of multiple classifiers by weighting each contribution
according to its performance (measured by F1-score). The
final decision is made based on the aggregated weighted
probabilities, leveraging the strengths of diverse models
while minimizing individual weaknesses.

Final Model Selection

The ensemble model’s predictions were compared against
actual labels on the testing set. The final configuration was
selected based on achieving the best balance across all
evaluation metrics. Eq. (15) shows Final Model Scoring.

Score_final = a*Accuracy + $*F1 + y*MCC ('| 5)

Where:
Score_final = Final evaluation score
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Accuracy = Proportion of correctly classified samples
F1 = F1-score of the model
MCC = Matthews Correlation Coefficient
a, B, y = Weighting factors for balanced evaluation

Eqg. (15) defines the overall evaluation criterion for
selecting the final model. By assigning weights to Accuracy,
F1-score, and MCC, the score ensures that the chosen model
performs well across different performance dimensions
rather than excelling in only one metric. This balanced
scoring system leads to a more reliable model.

Discussion

Experimental Setup

The proposed CleanBalance-EnsembleCHD algorithm
was experimentally evaluated in the Java programming
environment with the WEKA tool. The dataset was cleaned,
balanced, and feature selected prior to training and testing
the classifiers. Several machine learning models were
trained and compared to the proposed ensemble approach.
The performance was evaluated using Accuracy, Precision,
Recall, and F1-score.

Results

The CleanBalance-EnsembleCHD algorithm was tested on
a CHD dataset with the following initial properties: class
counts (0.0=515, 1.0=496), imbalance ratio (1.038), and
Gini index (0.4998). After applying cleaning methods, ENN
reduced the dataset from 1011 to 853 instances (counts:
{1.0=414, 0.0=439}), while IPF maintained the balanced
distribution. Afterapplying SMOTE, the dataset was divided
into 682 training and 171 testing samples.

Classifier performance (5-fold CV): Rotation Forest (Acc:
97.36%, F1: 0.9731, MCC: 0.9473), LogitBoost (Acc: 94.72%,
F1:0.9459, MCC: 0.8944), Multilayer Perceptron (Acc: 96.04%,
F1:0.9596, MCC: 0.9210), LMT (Acc: 97.95%, F1: 0.9788, MCC:
0.9589), and Random Forest (Acc: 98.53%, F1: 0.9848, MCC:
0.9707). The final ensemble included Random Forest, LMT,
and Rotation Forest.

Ensemble results: On the test set (171 instances), the
ensemble achieved 99.42% accuracy, 0.9939 F1-score, and
0.9884 MCC, correctly classifying 170 of 171 cases. Other
evaluation metrics include the Kappa statistic (0.9883),
MAE (0.0282), RMSE (0.0904), and 100% coverage at the 0.95
confidence level.

Other classifiers: SVM (Acc: 96.48%, F1: 0.9648), KNN (Acc:
91.78%, F1: 0.9179), and REPTree (Acc: 93.54%, F1: 0.9354)
all outperformed baseline models. Table 2 compares the
results obtained by Kadhim, M. A., & Radhi, A. M. (2023)
and the proposed CleanBalance-EnsembleCHD algorithm.

The results show that CleanBalance-EnsembleCHD
consistently outperformed the baseline models developed
by Kadhim, M. A,, & Radhi, A. M. (2023). For example, Random
Forest’s accuracy increased from 94.9% to 97.94%, while
SVM'’s increased from 89.0% to 96.48%. This improvement
was achieved by cleaning and balancing the data, and
combining multiple models together.

Discussion

Figure 2 compares the accuracy of Kadhim, M. A, &
Radhi, A. M. (2023) and CleanBalance-EnsembleCHD; the
ensemble performed better, while RandomForest achieved
97.94% accuracy. The improvement is due to improved
generalization with cleaned balanced data.

Figure 3illustrates that the CleanBalance-EnsembleCHD
outperformed the baseline using precision scores. The
Random Forest model provides the highest precision
especially 0.98. This improvement demonstrates that the
CleanBalance-EnsembleCHD effectively reduced false
positives. Therefore, it makes predictions more reliable for
clinical decision-making.

Figure4illustrates recall performance. The CleanBalance-
EnsembleCHD improved recall for all classifiers which results
more positive CHD cases being correctly identified. The
development of CleanBalance-EnsembleCHD demonstrates
its ability to correctly identify a minority of CHD cases and
reduce missed diagnoses.

Figure 5 shows that CleanBalance-EnsembleCHD
showed the best balance (RandomForest 0.97) in F1
value, which helps to accurately identify CHD cases and
reduce misclassifications. Experimental results confirm the
robustness and reliability of CleanBalance-EnsembleCHD,
a combination of data cleaning, balancing, and ensemble
learning, showing improvements in accuracy, recall, and
F1 value, confirming its robustness and reliability in CHD
prediction.

Future work and Conclusion

This study introduced the CleanBalance-EnsembleCHD
framework, which improves CHD prediction by cleaning

Table 2: Performance Comparison

Kadhimetal. [17]

CleanBalance-EnsembleCHD Algorithm

Classifiers

Accuracy (in %) Precision Recall F1-Score Accuracy (in %) Precision Recall F1-Score
SVM 89.0 0.87 0.93 0.90 96.48 0.96 0.96 0.96
KNN 88.6 0.87 0.92 0.89 91.78 0.91 0.91 0.91
DT 89.9 0.93 0.86 0.87 93.54 0.93 0.93 0.93
RF 94.9 0.94 0.96 0.95 97.94 0.98 0.97 0.97
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Figure 4: Recall Comparison

data, balancing classes, and integrating ensemble learning
with multiple classifiers. The best results were obtained by
combining classifiers such as ENN, IPF, SMOTE, and Rotation
Forest, LogitBoost, MLP, LMT with Random Forest. The
weighted ensemble provided the highest accuracy in MCC
and F1-score.

Limitations

Although the framework shows strong prediction in five
datasets, its applicability to highly heterogeneous clinical
data and computational challenges in low-resource
environments have yet to be validated.
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Figure 5: F1-Score Comparison

Future Works

Future research could focus on extending the framework
to real clinical data by adding deep learning models
and improving reliability and interpretation through
interpretable Al.
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