
Abstract
Coronary Heart Disease (CHD) is still one of the leading causes of death worldwide, which necessitates early and reliable prediction 
methods to support timely medical interventions.  Traditional machine learning approaches frequently struggle with noisy and 
imbalanced datasets which leading to biased predictions and reduced diagnostic reliability.  To address these limitations, this paper 
proposes the CleanBalance-EnsembleCHD algorithm that combines data cleaning, balancing, and ensemble learning to improve 
prediction accuracy.  The goal is to reduce noise, handle imbalance, and combine the strengths of multiple classifiers to detect CHDs 
more effectively.  For noise reduction, the methodology employs Edited Nearest Neighbor (ENN) and Iterative Partitioning Filter (IPF), 
if imbalance persists Synthetic Minority Oversampling Technique (SMOTE) used. Five classifiers namely Rotation Forest, LogitBoost, 
Multilayer Perceptron, Logistic Model Trees (LMT), and Random Forest were trained, with the best models chosen for weighted soft-
voting ensemble integration. The experimental evaluation on a CHD dataset with an initial class imbalance (maj/min ratio: 1.038, Gini 
index: 0.4998) revealed significant improvements. After ENN and IPF cleaning, the dataset was reduced from 1011 to 853 balanced 
instances (class counts: {1.0=414, 0.0=439}). Individual classifiers performed well, with accuracies of 97.36% (Rotation Forest), 94.72% 
(LogitBoost), 96.04% (Multilayer Perceptron), 97.95% (LMT), and 98.53% (Random Forest). After that, the top three models chosen 
Random Forest, LMT, and Rotation Forest were combined into an ensemble that outperformed all individual models on the test set, 
with Accuracy: 99.42%, F1-score: 0.9939, and MCC: 0.9884. These findings show that CleanBalance-EnsembleCHD provides superior 
predictive reliability leading to noise-resistant and balanced decision-making. Finally, the proposed framework provides a powerful and 
interpretable solution for early CHD detection using the potential to help clinicians with risk assessment and medical decision support.
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Introduction
Coronary heart disease (CHD) is a leading cause of death 
worldwide and greatly burdens healthcare systems 
(Hammoud, A., Karaki, A., Tafreshi, R., Abdulla, S., & Wahid, 
M.F. 2024). Early detection of CHD can help save lives, but 
the complexity of risk factors makes it difficult (Song, J. 
2024). Machine learning makes it possible to detect hidden 
patterns in medical data and make accurate CHD predictions 
possible (Dubey, M., Tembhurne, J., & Makhijani, R. 2024). 
But quality, imbalance, noise, and duplicates affect the 
performance of the prediction model (Al-Ssulami, A.M., 
Alsorori, R.S., Azmi, A.M., & Aboalsamh, H. 2023). Traditional 
ML models in CHD prediction are weakened by noise and 
unbalanced data, misclassifying a minority of cases.  Thus, an 
intelligent framework is needed that combines the strengths 
of classifiers, overcoming quality and imbalance (Wanyonyi, 
M., Morris, Z.N., Musyoka, F.M., & Kitavi, D.M. 2025).

Many studies have used machine learning methods 
such as SVM, KNN, decision trees, bagging, and boosting 
for CHD prediction. Over/undersampling methods were 
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used to overcome the imbalance, and feature selection 
and dimensionality reduction were used for performance 
improvement. Despite improvements, oversampling causes 
artificial noise and undersampling causes valuable data loss. 
Many models fail to remove noise/overlapping records, 
resulting in overfitting and poor generalization. Relying on 
a single classifier limits robustness, as no single algorithm 
performs consistently well across all datasets; thus, a unified 
strategy that combines quality, balance improvement, and 
multiple classifiers is necessary.

To address these shortcomings, the study introduces 
CleanBalance-EnsembleCHD, a new CHD framework that 
integrates data cleaning, balancing, and ensemble learning. 
Reliable models with noise reduction are generated by the 
Edited Nearest Neighbor (ENN) and Iterative Partitioning 
Filter (IPF); if there is imbalance, the class is balanced by the 
Synthetic Minority Oversampling Technique (SMOTE). The 
cleaned data is trained on classifiers such as RotationForest, 
LogitBoost, MultilayerPerceptron (MLP), Logistic Model Trees 
(LMT), and RandomForest; Weighted Soft-Voting Ensemble 
Learning is used to combine the best models and increase 
prediction accuracy and reliability.

The framework begins with data analysis, imbalance 
detection, and Gini index computation. It systematically 
improves dataset quality by using ENN and IPF, subsequent 
to SMOTE as needed.  After creating a balanced dataset, 
stratified sampling is used to ensure fair train-test splits. 
The framework takes advantage of the diversity of classifiers 
by selecting the best-performing models for Ensemble 
Integration. The final ensemble significantly outperformed 
the individual models.

The key contributions of this work are:
•	 Proposing CleanBalance-EnsembleCHD algorithm which 

is an integrated pipeline combining noise removal, 
balancing, and ensemble learning for CHD prediction.

•	 Employing ENN and IPF to clean noisy and overlapping 
records while preserving representative samples.

•	 Using stratif ied sampling and balanced dataset 
preparation to avoid bias.

•	 Training various classifiers with building a weighted 
soft-voting ensemble using the top-performing models.

•	 Showing superior performance with high accuracy, 
F1-score, with MCC which guarantees reliability in 
medical prediction contexts.

The goal of this study is to design a noise-resilient, and 
also balanced ensemble framework that guarantees robust 
with accurate prediction of coronary heart disease.

The specific objectives contain:
•	 To clean and balance the CHD dataset for unbiased 

learning.
•	 To assess multiple classifiers and detect the most 

effective ones.

•	 To construct a weighted ensemble model that 
utilizes classifier complementarity.

•	 To validate the proposed approach utilizing rigorous 
performance metrics.

CleanBalance-EnsembleCHD is unique in that it 
combines ENN-IPF-SMOTE preprocessing with ensemble 
incorporation of various sophisticated classifiers to ensure 
data quality and predictive robustness. Unlike previous 
work, it systematically handles noise, overlap, and imbalance 
before model training leading to more accurate outcomes.

The proposed framework can be utilized in clinical 
decision support systems, hospitals, and health monitoring 
platforms to assist physicians in early CHD detection and 
risk assessment. Its adaptability also makes it applicable to 
other medical domains where data imbalance and noise 
are common. The remainder of this paper is organized 
as follows: Section 2 presents the related works of the 
proposed methodology in detail. Section 3 describes dataset 
preparation and preprocessing and the details about the 
CleanBalance-EnsembleCHD algorithm. Section 4reports 
experimental results and performance analysis. Section 5 
concludes the study and shows future research directions.

Literature Review
Recently, research is underway to improve the accuracy 
and reliability of diagnosis by using machine learning to 
predict CHD. Khdair, H.S., & Dasari, N. (2021) examined 
several ML algorithms in CHD prediction and emphasized 
the importance of accurate handling of clinical data. 

Ayon, S. I . ,  Islam, M.M., & Hossain, M.R. (2020) 
demonstrated in a computational intelligence comparison 
that ensemble methods perform better than individual 
classifiers in capturing complex patterns in CHD data. 
Poonkuzhali, R., Pavithra, S., Kumar, K.S., & Nallusamy, C. 
(2024) demonstrated the effectiveness of feature selection 
using ML approaches to predict CHD in large experiments.  

AmoghVarshith, 1.P., Kumar, S., Harika, D., D.Haritha, 
& Priyanka, P. (2024) compared several methods and 
emphasized the benefits of ensemble strategies in 
improving accuracy in predicting CHD outcomes. Srinija, 
P., & Pranay, V. (2025) evaluated classifiers on benchmark 
data and emphasized that model performance is affected 
by preprocessing and equalization techniques.

 Guo, H. (2023) compared five ML models and found 
that the mixed and ensemble approaches provided higher 
accuracy than single models.  Rasheed, M., Khan, M.A., 
Elmitwally, N.S., Issa, G.F., Ghazal, T.M., Alrababah, H., & 
Mago, B. (2022) proposed an ML framework for predicting 
CHD in a cyber resilience context and emphasized that data 
preprocessing is important for robust performance.  

Keshav Srivastava, D., Choubey, K., & Choubey, D.K. (2020) 
emphasized the important role of data mining techniques 
with ML models to improve prediction accuracy. Omkari, 
D.Y., & Shaik, K. (2024) combined multiple classifiers in a TLV 
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framework for CHD prediction and demonstrated that multi-
layered ensembles improved performance and consistency 
over individual ensembles.  

Mohd, N., Sharma, J., & Upadhyay, D. (2021) identified 
challenges such as class imbalance and noise in CHD 
prediction, revealing that they can affect generalization.  
Kavitha, D.M., Gnaneswar, G., Dinesh, R., Sai, Y.R., & Suraj, R. 
(2021) developed a hybrid ML model that combines multiple 
classifiers and showed that it significantly reduces error rates.

Although current research confirms the strength of 
ML in CHD prediction, noisy data, class imbalance, and 
generalization deficiencies remain ongoing issues. These 
limitations highlight the need for a robust framework that 
integrates data cleaning, balancing, and ensemble learning 
of CleanBalance-EnsembleCHD (Table 1).

Materials and Methods
This section explains the procedural background of 
the CleanBalance-EnsembleCHD framework for CHD 
prediction.  To overcome noise, class imbalance, and sample 
heterogeneity issues, CleanBalance-EnsembleCHD will 
integrate preprocessing, data cleaning, equalization, and 
ensemble modeling steps.  

This algorithm follows a structured pipeline that 
combines data preparation, noise reduction via an Edited 
Nearest Neighbors (ENN)/Iterative Partitioning Filter (IPF), 
class balancing via a Synthetic Minority Oversampling 

Technique (SMOTE), and model training with a Weighted 
Soft-Voting group.

This design combines noisy data removal, misclassification 
correction, class imbalance correction, and ensemble 
learning to ensure fairness and robustness by integrating 
multiple classifiers.  This creates a reliable predictive 
framework across multiple populations; Algorithm 1 shows 
CleanBalance-EnsembleCHD.

The CleanBalance-EnsembleCHD algorithm predicts 
coronary heart disease (CHD) by combining data cleaning, 
balancing, addition to ensemble learning in a structured 
workflow.  It starts by examining class distribution and 
measuring imbalances with the imbalance ratio and Gini 
Index.  To improve data quality, noisy and overlapping 
samples are removed using Edited Nearest Neighbors (ENN), 
and also instances that are consistently misclassified are 
filtered out using the Iterative Partitioning Filter (IPF).  The 
cleaned dataset is then balanced with SMOTE to produce 
synthetic samples for the minority class.  After dividing the 
balanced data into training and testing sets, various classifiers 
such as RotationForest, LogitBoost, MultilayerPerceptron, 
Logistic Model Trees, and also RandomForest are trained 
and tested using cross-validation.  The best-performing 
models, as determined by F1 scores, are combined using 
a weighted soft voting ensemble.  Finally, the ensemble is 
tested on unseen data, as well as its performance is assessed 
using accuracy, precision, recall, F1-score, and MCC. The 

Table 1: Summary Table

Authors Methods Key Findings Limitations

Khdair & Dasari [6] Applied multiple machine learning 
techniques for CHD prediction

Showed potential of ML in analyzing 
complex medical datasets

Did not address 
class imbalance and 
interpretability

Ayon et al. [7] Comparative study of 
computational intelligence 
techniques

Demonstrated variation in accuracy 
across techniques

Lack of unified ensemble 
approach

Poonkuzhali et al. [8] Supervised ML algorithms Showed adaptability to patient 
datasets

Limited exploration of hybrid 
models

AmoghVarshith et al. [9] Multiple ML algorithms Improved prediction efficiency Scalability issues with larger 
datasets

Srinija & Pranay [10] Machine learning-based CHD 
prediction

Reliable detection in small datasets Poor generalization to 
diverse populations

Guo [11] Comparative study with five ML 
models

Identified trade-offs between 
complexity and performance

Limited scope of models 
tested

Rasheed et al. [12] Systematic evaluation of ML 
methods

Highlighted improved generalization Lacked ensemble integration

Srivastava et al. [13] Machine learning and data mining Hybrid methods boosted prediction Data preprocessing 
challenges not fully solved

Omkari & Shaik [14] Two-layered voting (ensemble) 
framework

Achieved higher performance via 
ensemble

Increased computational 
complexity

Mohd et al. [15] Survey of ML techniques Provided comprehensive overview of 
heart disease ML methods

No experimental validation

Kavitha et al. [16] Hybrid ML model Achieved superior prediction accuracy Complexity and 
interpretability issues remain
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Algorithm 1: CleanBalance-EnsembleCHD  
Input: PFHD dataset (Preprocessed & Feature-selected)  
Output: Best-performing ensemble model for CHD prediction  

1: Analyze class distribution → detect imbalance  
2: IR ← N_majority / N_minority  
3: Gini ← 1 - Σ (p_i)^2  

4: D_ENN ← Apply ENN(D)   // remove noisy/overlapping samples  
5: BaseModel ← Train(RandomForest, D_ENN)  
6: D_IPF ← RemoveMisclassified(D_ENN, BaseModel)  // IPF 
filtering  

7: D_balanced ← ApplySMOTE(D_IPF)  
8: (D_train, D_test) ← StratifiedSplit(D_balanced)  

9: Models ← {RotationForest, LogitBoost, MLP, LMT, 
RandomForest}  
10: For each model m in Models do  
        Train m on D_train  
        Evaluate m using 5-fold CV → F1_m, MCC_m  
    End For  

11: TopModels ← Select models with highest F1 scores  
12: Ensemble ← WeightedSoftVoting(TopModels, weights = 
F1_m)  

13: Predictions ← Ensemble(D_test)  
14: Evaluate Predictions using {Accuracy, Precision, Recall, F1, 
MCC}  

15: BestModel ← Select configuration with highest balanced 
performance  
16: Save(BestModel)  

Figure 1: Flow diagram of CleanBalance-EnsembleCHD algorithm

best configuration is saved for integration into the full CHD 
prediction framework. Figure 1 shows the flow diagram of 
CleanBalance-EnsembleCHD algorithm.

The flow diagram of the CleanBalance-EnsembleCHD 
algorithm depicts the entire pipeline for predicting CHD. It 
cleans noisy data, balances classes, trains diverse classifiers, 
as well as combines the best models using weighted soft 
voting to deliver accurate with reliable CHD predictions.

Dataset Preparation
The experimental dataset utilized in this study is known 
as the Preprocessed and Feature-Selected Heart Disease 
(PFHD) dataset. It was created by combining five benchmark 
CHD datasets commonly used in machine learning research: 
Cleveland, Hungarian, Long Beach, Switzerland, and Statlog. 
Each dataset comes from various clinical settings which 
ensures a diverse range of patient demographics and 
medical profiles. Eq. (1) shows Dataset Representation.
D = {(xᵢ, yᵢ) | xᵢ ∈ ℝⁿ, yᵢ ∈ {0,1}, i=1,2,…,N} (1)

where:
D: dataset
xᵢ: n-dimensional feature vector of patient i
yᵢ: binary target class (0 = no CHD, 1 = CHD)
N: total number of patient records

Eq. (1) formally defines the dataset as a set of feature 
vectors with corresponding class labels. Each patient 
record contains multiple clinical features, while the class 
label indicates whether the patient has CHD or not. This 
mathematical representation serves as the foundation for 
all future preprocessing, with modeling steps.  This unified 
dataset improves generalizability by combining diverse 
patient populations, making the proposed framework more 
robust to dataset-specific biases. The dataset preparation is 
a critical step in ensuring that the CHD prediction framework 
uses reliable with representative data.  Raw clinical datasets 
frequently contain incomplete records, irregular patterns, 
as well as irrelevant features, which can skew the learning 
process. Consequently, a structured preprocessing pipeline 
is applied prior to model training.

First, missing data are handled and incomplete entries 
are filled in to ensure consistency and fairness across all 
patient samples.  Then, as outliers are removed, the learning 
algorithm avoids false conclusions and creates a dataset that 
accurately reflects the underlying population. After that, 
normalization is done to equalize the different ranges of 
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medical features (fat, blood pressure, age), otherwise some 
variables will be more influential than others.  

By equalizing features, each attribute contributes 
equally; feature selection identifies key variables in CHD 
prediction and eliminates unnecessary ones.  This step 
focuses on clinical factors, structures and balances the data, 
and creates the foundation for accurate and generalizable 
CHD prediction.

Class Imbalance Analysis
For sample reliability, the class distribution was examined 
and the skewness of the data was estimated through the 
majority-minority ratio. Eq. (2) shows Imbalance Ratio.

IR = N_majority / N_minority (2)

Where:
IR = Imbalance Ratio
N_majority = Number of majority class samples
N_minority = Number of minority class samples
The imbalance ratio measures how skewed the dataset is 
by comparing the number of majority and minority class 
samples.  A higher imbalance ratio indicates that one 
class significantly outperforms the other that may bias 
the classifier to predict the majority class more frequently.  
Impurity in class distribution was additionally measured to 
determine dataset bias.  The Gini Index was used to measure 
inequality between class labels. Eq. (3) shows Gini Index.

Gini = 1 - Σ (p_i)^2 (3)

Where:
Gini = Gini Index value
p_i = Probability of class i in the dataset
Σ = Summation across all classes

The Gini Index measures the impurity or inequality in 
class distribution. If all patients belong to the same class, 
the Gini value is zero, indicating perfect purity. A higher Gini 
value reflects a more balanced but potentially noisy class 
distribution, making it useful for assessing dataset fairness.

Noise and Overlap Reduction
The dataset may contain noisy or overlapping records that 
reduces classifier performance.  To improve quality, Edited 
Nearest Neighbors (ENN) was used to remove instances 
that cause excessive overlap between classes.  This filtering 
ensures that only reliable and representative data points are 
used for training.  Equation (4) depicts the quality measure 
for samples.

Q(x) = d(x, y_same) - d(x, y_diff)                             (4)
Where:
Q(x) = Quality measure for a sample x
d(x, y_same) = Distance between x and nearest neighbor 
of the same class
d(x, y_diff) = Distance between x and nearest neighbor of 
a different class

This quality metric compares how close a data point is to 
its nearest neighbor in the same class versus one from the 
opposite class.  A positive value indicates that the sample 
is more similar to its own class which implies reliability, 
whereas negative or small values may indicate noisy or 
overlapping data.  ENN systematically removes potentially 
misleading samples, increasing the dataset’s robustness.

Iterative Partition Filtering
Iteratively removing instances that were consistently 
misclassified by a trained model helped to refine the dataset 
even more.  This filtering step ensured which borderline or 
mislabeled data did not reduce model performance. Eq. (5) 
shows Misclassification Error.

M_error = |y_true - y_pred|  (5)
Where:
M_error = Misclassification error for a sample
y_true = True class label
y_pred = Predicted class label

Eq. (5) quantifies the difference between a sample’s 
true and predicted labels.  A value of zero indicates that 
the prediction is correct, whereas a nonzero value indicates 
an error.  Iteratively filtering out such misclassified records 
makes the dataset cleaner and more robust.

Data Balancing
Following cleaning, synthetic samples for the minority class 
were created to balance class representation.  This step 
ensured that classifiers were not biased toward the majority 
class.  Eq. (6) demonstrates Synthetic Sample Generation.

x_new = x_minority + λ * (x_neighbor - x_minority) (6)
Where:
x_new = Generated synthetic minority sample
x_minority = Existing minority sample
x_neighbor = Nearest neighbor of the minority sample
λ = Random number between 0 and 1

Eq. (6) describes how to generate new synthetic samples 
for the minority class.  Realistic synthetic examples are 
created by interpolating between an existing minority 
sample and one of its neighbors with applying a random 
scaling factor.  This balances the dataset and lowers bias 
towards the majority class.

Train-Test Partitioning
To evaluate model performance, the balanced dataset was 
divided into two subsets: training and testing.  To keep 
relative class proportions consistent across splits which a 
stratified approach was used.  Eq. (7) indicates  Train-Test 
Partitionin.

D = D_train ∪ D_test,  D_train ∩ D_test = ∅ (7)

Where:
D = Complete dataset
D_train = Training subset
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D_test = Testing subset
∅ = Empty set, indicating no overlap between splits
This expression ensures that the dataset is split into two 
disjoint subsetsshows training data used for model learning, 
and testing data used for evaluation. The non-overlapping 
condition guarantees that the evaluation remains unbiased 
by preventing data leakage.

Model Training
Multiple classifiers were trained on the processed training set 
to capture a variety of decision boundaries. RotationForest, 
LogitBoost, MLP, LMT, and RandomForest were selected for 
their diversity, as they offer different learning methods and 
strengths:

Rotation forest
Randomly rotating features and learning from a different 
subset of features improves accuracy and reduces 
correlation.

LogitBoost
Reduces logistic loss, engages weak learners, and provides 
accurate probabilities by handling complex boundaries.

MLP
A neural classifier that learns nonlinear relationships with 
hidden layers and captures complex medical data.

LMT
Combines decision trees and logistic regression to provide 
clarity and precision to medical data.

RandomForest
Combines multiple random decision trees, preventing 
overfitting and handling high-dimensional data and feature 
importance.

Eq. (8) demonstrates the classifier prediction function.

h_m(x) = f_m(W_m, x) (8)

Where:
h_m(x) = Prediction of classifier m
f_m = Mapping function for classifier m
W_m = Learned parameters of classifier m
x = Input feature vector

Eq. (8) processes each classifier input and predicts the 
class label. Combining models such as RotationForest, 
LogitBoost, MLP, LMT, RandomForest, etc., the various 
strategies combine to provide robust and generalized 
prediction.

Model Evaluation
Each classifier was evaluated using multiple metrics to 
ensure balanced performance across both classes. Key 
metrics included accuracy, precision, recall, F1-score, and 
MCC. Eq. (9–13) shows Evaluation Metrics.

Accuracy = (TP + TN) / (TP + TN + FP + FN) (9)

Precision = TP / (TP + FP) (10)

Recall = TP / (TP + FN) (11)

F1 = 2 * (Precision * Recall) / (Precision + Recall) (12)

MCC = (TP*TN - FP*FN) / sqrt((TP+FP)(TP+FN)
(TN+FP)(TN+FN))

(13)

Where:
TP = True Positives
FP = False Positives
FN = False Negatives
TN = True Negatives
These equations Eq. (9–13) define standard evaluation 
metrics. Accuracy measures overall correctness, Precision 
focuses on how many positive predictions are correct, 
recall captures how many actual positives are identified, 
F1-score balances Precision and Recall, and MCC provides 
a correlation-based measure of classification quality even 
in imbalanced settings. Together, these metrics provide a 
comprehensive evaluation of model performance.

Ensemble Construction
Top-performing classifiers were combined using a weighted 
soft voting ensemble. Each model’s prediction contributed 
to the final decision in proportion to its F1-score. Eq. (14) 
shows Weighted Soft Voting.

P_final(c) = Σ (w_m * P_m(c)) / Σ w_m (14)

Where:
P_final(c) = Final probability for class c
P_m(c) = Predicted probability of class c by model m
w_m = Weight of model m based on its F1-score
Σ = Summation across selected models

This ensemble method combines the predictions 
of multiple classifiers by weighting each contribution 
according to its performance (measured by F1-score). The 
final decision is made based on the aggregated weighted 
probabilities, leveraging the strengths of diverse models 
while minimizing individual weaknesses.

Final Model Selection
The ensemble model’s predictions were compared against 
actual labels on the testing set. The final configuration was 
selected based on achieving the best balance across all 
evaluation metrics. Eq. (15) shows Final Model Scoring.

Score_final = α*Accuracy + β*F1 + γ*MCC (15)

Where:
Score_final = Final evaluation score
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Accuracy = Proportion of correctly classified samples
F1 = F1-score of the model
MCC = Matthews Correlation Coefficient
α, β, γ = Weighting factors for balanced evaluation

Eq. (15) defines the overall evaluation criterion for 
selecting the final model. By assigning weights to Accuracy, 
F1-score, and MCC, the score ensures that the chosen model 
performs well across different performance dimensions 
rather than excelling in only one metric. This balanced 
scoring system leads to a more reliable model.

Discussion

Experimental Setup
The proposed CleanBalance-EnsembleCHD algorithm 
was experimentally evaluated in the Java programming 
environment with the WEKA tool.  The dataset was cleaned, 
balanced, and feature selected prior to training and testing 
the classifiers.  Several machine learning models were 
trained and compared to the proposed ensemble approach.  
The performance was evaluated using Accuracy, Precision, 
Recall, and F1-score.

Results
The CleanBalance-EnsembleCHD algorithm was tested on 
a CHD dataset with the following initial properties: class 
counts (0.0=515, 1.0=496), imbalance ratio (1.038), and 
Gini index (0.4998).  After applying cleaning methods, ENN 
reduced the dataset from 1011 to 853 instances (counts: 
{1.0=414, 0.0=439}), while IPF maintained the balanced 
distribution.  After applying SMOTE, the dataset was divided 
into 682 training and 171 testing samples.

Classifier performance (5-fold CV): Rotation Forest (Acc: 
97.36%, F1: 0.9731, MCC: 0.9473), LogitBoost (Acc: 94.72%, 
F1: 0.9459, MCC: 0.8944), Multilayer Perceptron (Acc: 96.04%, 
F1: 0.9596, MCC: 0.9210), LMT (Acc: 97.95%, F1: 0.9788, MCC: 
0.9589), and Random Forest (Acc: 98.53%, F1: 0.9848, MCC: 
0.9707).  The final ensemble included Random Forest, LMT, 
and Rotation Forest.

Ensemble results: On the test set (171 instances), the 
ensemble achieved 99.42% accuracy, 0.9939 F1-score, and 
0.9884 MCC, correctly classifying 170 of 171 cases.  Other 
evaluation metrics include the Kappa statistic (0.9883), 
MAE (0.0282), RMSE (0.0904), and 100% coverage at the 0.95 
confidence level.

Other classifiers: SVM (Acc: 96.48%, F1: 0.9648), KNN (Acc: 
91.78%, F1: 0.9179), and REPTree (Acc: 93.54%, F1: 0.9354) 
all outperformed baseline models.  Table 2 compares the 
results obtained by Kadhim, M. A., & Radhi, A. M. (2023) 
and the proposed CleanBalance-EnsembleCHD algorithm.

The results show that CleanBalance-EnsembleCHD 
consistently outperformed the baseline models developed 
by Kadhim, M. A., & Radhi, A. M. (2023).  For example, Random 
Forest’s accuracy increased from 94.9% to 97.94%, while 
SVM’s increased from 89.0% to 96.48%. This improvement 
was achieved by cleaning and balancing the data, and 
combining multiple models together.

Discussion
Figure 2 compares the accuracy of Kadhim, M. A., & 
Radhi, A. M. (2023) and CleanBalance-EnsembleCHD; the 
ensemble performed better, while RandomForest achieved 
97.94% accuracy. The improvement is due to improved 
generalization with cleaned balanced data.

Figure 3 illustrates that the CleanBalance-EnsembleCHD 
outperformed the baseline using precision scores. The 
Random Forest model provides the highest precision 
especially 0.98. This improvement demonstrates that the 
CleanBalance-EnsembleCHD effectively reduced false 
positives. Therefore, it makes predictions more reliable for 
clinical decision-making.

Figure 4 illustrates recall performance.  The CleanBalance-
EnsembleCHD improved recall for all classifiers which results 
more positive CHD cases being correctly identified. The 
development of CleanBalance-EnsembleCHD demonstrates 
its ability to correctly identify a minority of CHD cases and 
reduce missed diagnoses.

Figure 5 shows that CleanBalance-EnsembleCHD 
showed the best balance (RandomForest 0.97) in F1 
value, which helps to accurately identify CHD cases and 
reduce misclassifications. Experimental results confirm the 
robustness and reliability of CleanBalance-EnsembleCHD, 
a combination of data cleaning, balancing, and ensemble 
learning, showing improvements in accuracy, recall, and 
F1 value, confirming its robustness and reliability in CHD 
prediction.

Future work and Conclusion
This study introduced the CleanBalance-EnsembleCHD 
framework, which improves CHD prediction by cleaning 

Table 2: Performance Comparison

Classifiers
Kadhim et al. [17] CleanBalance-EnsembleCHD Algorithm

Accuracy (in %) Precision Recall F1-Score Accuracy (in %) Precision Recall F1-Score

SVM 89.0 0.87 0.93 0.90 96.48 0.96 0.96 0.96

KNN 88.6 0.87 0.92 0.89 91.78 0.91 0.91 0.91

DT 89.9 0.93 0.86 0.87 93.54 0.93 0.93 0.93

RF 94.9 0.94 0.96 0.95 97.94 0.98 0.97 0.97
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Figure 2: Accuracy Comparison

Figure 3: Precision Comparison

Figure 4: Recall Comparison

Figure 5: F1-Score Comparison

data, balancing classes, and integrating ensemble learning 
with multiple classifiers. The best results were obtained by 
combining classifiers such as ENN, IPF, SMOTE, and Rotation 
Forest, LogitBoost, MLP, LMT with Random Forest. The 
weighted ensemble provided the highest accuracy in MCC 
and F1-score.

Limitations
Although the framework shows strong prediction in five 
datasets, its applicability to highly heterogeneous clinical 
data and computational challenges in low-resource 
environments have yet to be validated. 

Future Works
Future research could focus on extending the framework 
to real clinical data by adding deep learning models 
and improving reliability and interpretation through 
interpretable AI.
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