Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.07Keywords:
Cybersecurity, machine learning, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of digital infrastructures and the increasing sophistication of cyber-attacks necessitate the development of intelligent, adaptive, and real-time defense mechanisms. Traditional signature-based intrusion detection systems often fail to detect zero-day exploits and evolving attack patterns, making anomaly detection a critical component of modern cybersecurity. This research proposes an Adaptive Machine Learning Framework capable of detecting anomalies in real time by integrating streaming data analysis, dynamic feature selection, and continuous model optimization. The framework leverages a hybrid learning paradigm that combines supervised and unsupervised techniques—specifically, ensemble-based classification for known threats and clustering-based outlier detection for unknown patterns. A key innovation lies in the adaptive retraining module, which incrementally updates the model parameters in response to evolving network behaviors and attack signatures without requiring full retraining, thereby reducing computational overhead. The system architecture incorporates data preprocessing, feature engineering, adaptive model selection, and decision fusion layers to ensure high detection accuracy and minimal false positives. Real-world network traffic datasets, such as UNSW-NB15 and CIC-IDS2017, were used to validate the framework’s effectiveness. Experimental results demonstrate an average detection accuracy exceeding 98% with a significant improvement in detection latency compared to baseline methods. This approach shows strong potential for deployment in live cybersecurity environments, offering robust defense against both known and unknown threats. The proposed framework can be extended to support multi-modal data sources, enabling its integration into large-scale security information and event management (SIEM) systems for proactive threat mitigation.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

