Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.07Keywords:
Cybersecurity, machine learning, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of digital infrastructures and the increasing sophistication of cyber-attacks necessitate the development of intelligent, adaptive, and real-time defense mechanisms. Traditional signature-based intrusion detection systems often fail to detect zero-day exploits and evolving attack patterns, making anomaly detection a critical component of modern cybersecurity. This research proposes an Adaptive Machine Learning Framework capable of detecting anomalies in real time by integrating streaming data analysis, dynamic feature selection, and continuous model optimization. The framework leverages a hybrid learning paradigm that combines supervised and unsupervised techniques—specifically, ensemble-based classification for known threats and clustering-based outlier detection for unknown patterns. A key innovation lies in the adaptive retraining module, which incrementally updates the model parameters in response to evolving network behaviors and attack signatures without requiring full retraining, thereby reducing computational overhead. The system architecture incorporates data preprocessing, feature engineering, adaptive model selection, and decision fusion layers to ensure high detection accuracy and minimal false positives. Real-world network traffic datasets, such as UNSW-NB15 and CIC-IDS2017, were used to validate the framework’s effectiveness. Experimental results demonstrate an average detection accuracy exceeding 98% with a significant improvement in detection latency compared to baseline methods. This approach shows strong potential for deployment in live cybersecurity environments, offering robust defense against both known and unknown threats. The proposed framework can be extended to support multi-modal data sources, enabling its integration into large-scale security information and event management (SIEM) systems for proactive threat mitigation.Abstract
How to Cite
Downloads
Similar Articles
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

