Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.07Keywords:
Cybersecurity, machine learning, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of digital infrastructures and the increasing sophistication of cyber-attacks necessitate the development of intelligent, adaptive, and real-time defense mechanisms. Traditional signature-based intrusion detection systems often fail to detect zero-day exploits and evolving attack patterns, making anomaly detection a critical component of modern cybersecurity. This research proposes an Adaptive Machine Learning Framework capable of detecting anomalies in real time by integrating streaming data analysis, dynamic feature selection, and continuous model optimization. The framework leverages a hybrid learning paradigm that combines supervised and unsupervised techniques—specifically, ensemble-based classification for known threats and clustering-based outlier detection for unknown patterns. A key innovation lies in the adaptive retraining module, which incrementally updates the model parameters in response to evolving network behaviors and attack signatures without requiring full retraining, thereby reducing computational overhead. The system architecture incorporates data preprocessing, feature engineering, adaptive model selection, and decision fusion layers to ensure high detection accuracy and minimal false positives. Real-world network traffic datasets, such as UNSW-NB15 and CIC-IDS2017, were used to validate the framework’s effectiveness. Experimental results demonstrate an average detection accuracy exceeding 98% with a significant improvement in detection latency compared to baseline methods. This approach shows strong potential for deployment in live cybersecurity environments, offering robust defense against both known and unknown threats. The proposed framework can be extended to support multi-modal data sources, enabling its integration into large-scale security information and event management (SIEM) systems for proactive threat mitigation.Abstract
How to Cite
Downloads
Similar Articles
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

