Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.12Keywords:
Nanophthalmos, IOL power calculation, short axial length, cataract surgery, Accuracy of IOL PowerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aim: To compare the predictive accuracy of three widely used IOL power calculation formulas—Hoffer Q, SRK/T, and SRK II—in adult patients with nanophthalmos undergoing cataract surgery or clear lens extraction. Methods: This retrospective observational study included 45 eyes with axial lengths ≤ 20.5 mm diagnosed with nanophthalmos. All patients underwent uncomplicated cataract surgery or clear lens extraction with posterior chamber IOL implantation. Preoperative biometry was performed using ZEISS IOL Master 700 or NANO AXIS A-scan. IOL power was calculated using Hoffer Q, SRK/T, and SRK II formulas. Postoperative spherical equivalent was recorded at one month, and prediction error was calculated as the difference between actual and predicted refraction. Mean absolute error (MAE) and percentage of eyes within ±0.25 D, ±0.50 D, ±1.00 D, and ±2.00 D were assessed. Statistical analysis included one-sample t-tests and descriptive statistics using SPSS version 26. Results: The Hoffer Q formula showed the lowest mean absolute prediction error (−0.44 ± 0.30 D), followed by SRK/T (+0.68 ± 0.73 D), while SRK II exhibited the highest error (+3.28 ± 0.52 D). The Hoffer Q formula demonstrated superior accuracy, with 75.6% of eyes within ±0.50 D and 93.3% within ±1.00 D of the target refraction. SRK II showed a statistically significant hyperopic shift (p < 0.001), whereas Hoffer Q and SRK/T did not show statistically significant differences from zero prediction error. Conclusion: Among the three formulas studied, the Hoffer Q formula provided the most accurate IOL power prediction in nanophthalmic eyes, with the lowest refractive error and highest consistency. These findings support the use of Hoffer Q in managing cataract patients with nanophthalmos and highlight the need for further evaluation of advanced formulas in this subgroup.Abstract
How to Cite
Downloads
Similar Articles
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vaibhav, Raj K Tiwari, Low power three-stage OTA using reverse nested frequency compensation without nulling resistor , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Priyanka Patel, Bhaskar Pandya, Indian myths and modernity: Their application in Tagore, Anand, and Narayan’s selected short stories , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Akram M. Elias, Rayan S. Hamed, Jiyar M. Naji, The impact of bone substitute combined with blood cell progenerators on the healing of surgical bony defects , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- KIRANDIMRI ., N. K. SHARMA, EFFECT OF ORGANIC FERTILIZERS ON SHOOT MORPHOLOGY OF ANACYCLUS PYRETHRUM IN THREE DIFFERENT ALTITUDES , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

