Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.12Keywords:
Nanophthalmos, IOL power calculation, short axial length, cataract surgery, Accuracy of IOL PowerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aim: To compare the predictive accuracy of three widely used IOL power calculation formulas—Hoffer Q, SRK/T, and SRK II—in adult patients with nanophthalmos undergoing cataract surgery or clear lens extraction. Methods: This retrospective observational study included 45 eyes with axial lengths ≤ 20.5 mm diagnosed with nanophthalmos. All patients underwent uncomplicated cataract surgery or clear lens extraction with posterior chamber IOL implantation. Preoperative biometry was performed using ZEISS IOL Master 700 or NANO AXIS A-scan. IOL power was calculated using Hoffer Q, SRK/T, and SRK II formulas. Postoperative spherical equivalent was recorded at one month, and prediction error was calculated as the difference between actual and predicted refraction. Mean absolute error (MAE) and percentage of eyes within ±0.25 D, ±0.50 D, ±1.00 D, and ±2.00 D were assessed. Statistical analysis included one-sample t-tests and descriptive statistics using SPSS version 26. Results: The Hoffer Q formula showed the lowest mean absolute prediction error (−0.44 ± 0.30 D), followed by SRK/T (+0.68 ± 0.73 D), while SRK II exhibited the highest error (+3.28 ± 0.52 D). The Hoffer Q formula demonstrated superior accuracy, with 75.6% of eyes within ±0.50 D and 93.3% within ±1.00 D of the target refraction. SRK II showed a statistically significant hyperopic shift (p < 0.001), whereas Hoffer Q and SRK/T did not show statistically significant differences from zero prediction error. Conclusion: Among the three formulas studied, the Hoffer Q formula provided the most accurate IOL power prediction in nanophthalmic eyes, with the lowest refractive error and highest consistency. These findings support the use of Hoffer Q in managing cataract patients with nanophthalmos and highlight the need for further evaluation of advanced formulas in this subgroup.Abstract
How to Cite
Downloads
Similar Articles
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Lavkush Pandey, Trilokinath, Convergence of Bisection Method , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

